降幂公式辅助角公式题库_第1页
降幂公式辅助角公式题库_第2页
降幂公式辅助角公式题库_第3页
降幂公式辅助角公式题库_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、降属公式、辅助角公式练习1 .(浙江)(11)函数f(x)sin(2x-)2j2sin2x地最小正周期是.2 .(浙江)(12)函数f(x)sin2(2x)地最小正周期是421.(湖南)16.(本小题满分12分)已知函数f(x)sin2x2sinx(I)求函数f(x)地最小正周期.(II)求函数f(x)地最大值及f(x)取最大值时x地集合.5 .(北京)(15)(本小题共13分)已知函数f(x)2cos2xsin2x(I)求f()地值;3(n)求f(x)地最大值和最小值6 .(北京)(15)(本小题共13分)已知函数f(x)2cos2xsin2x4cosx.(I)求f(一)地值;3(n)求f(

2、x)地最大值和最小值.2.2cosxsinx119 .(湖北)16.(本小题满分12分)已经函数f(x)xx,g(x)-sin2x-.224(I)函数f(x)地图象可由函数g(x)地图象经过怎样变化得出?(n)求函数h(x)f(x)g(x)地最小值,并求使用h(x)取得最小值地x地集合.10 .(湖南)16.(本小题满分12分)已知函数f(x)73sin2x2sin2x.(I)求函数f(x)地最大值;(II)求函数f(x)地零点地集合.1.(广东卷)函数y 2COS2(XA.最小正周期为地奇函数C.最小正周期为地奇函数2)1是()4B. 最小正周期为地偶函数D.最小正周期为地偶函数28.(安徽

3、卷)已知函数f (x)3 sin x cos x(0), y f (x)地图像与直线 y 2地两个相邻交9.点地距离等了,则f (x)地单调递增区间是(A.k, k 12*k Z B. kYk1117,k ZC.k3,k61,k Z D. k6,k9.1. 安徽卷)设函数32,其中12,则导数/I”地取值范围是()A.-二一B.1C1D.二一10.(江西卷)函数f(x)(1,3tanx)cosx地最小正周期为()A.2B.3-C.D.一2224.(上海卷)函数y2cos2xsin2x地最小值是.27.(上海卷)函数f(x)2cos2xsin2x地最小值是.30.(北京)(本小题共12分)已知函

4、数f(x)2sin(x)cosx.(I)求f(x)地最小正周期;(n)求f(x)在区间一,一上地最大值和最小值6233.(山东卷)(本小题满分12分)设函数f(x)=cos(2x+)+sin2x.(1)求函数f(x)地最大值和最小正周期.1c1(2) 设ABC为ABC地二个内角,若cosB=,f(-)-,且C为锐角,求sinA32434.(山东卷)(本小题满分12分)设函数f(x)=2sinxcos2cosxsinsinx(0)在x处2取最小值.(1) 求.地值;3(2) 在ABC中,a,b,c分别是角A,B,C地对边,已知a1,b<2,f(A),求角C.244.(重庆卷)(本小题满分1

5、3分,(I)小问7分,(n)小问6分.)222设函数f(x)(sinxcosx)2cosx(0)地最小正周期为.3g(x)地单调(I)求地最小正周期.(n)若函数yg(x)地图像是由yf(x)地图像向右平移一个单位长度得到,求y2增区间.3、(广东)已知函数f(x)(1cos2x)sin2x,xR,则£他)是()A、最小正周期为地奇函数B、最小正周期为地奇函数2C最小正周期为地偶函数D、最小正周期为一地偶函数24.(海南、宁夏文科卷)函数f(x)cos2x2sinx地最小值和最大值分别为(C. 1 3, -D. 一 2,一221口一(x R),则 f(x)是()2B.最小正周期为冗地

6、奇函数A.-3,1B.2,26.(广东)若函数f(x)sin2xA.最小正周期为工地奇函数2C.最小正周期为2冗地偶函数D.最小正周期为冗地偶函数9.(年天津)已知函数f(x)asinxbcosx(a、b为常数,a0,xR)在x一处取得最小值43,一则函数yf(x)是()4,一一一、,一.,,一一,一、,一.3,A.偶函数且它地图象关于点(,0)对称B.偶函数且它地图象关于点(金一,0)对称2,一,一、,,一一一,3,,一,一、,,一一一,.,C.奇函数且它地图象关于点(二,0)对称D.奇函数且它地图象关于点(,0)对称213.(广东理科卷)已知函数f(x)(sinxcosx)sinx,xR,则f(x)地最小正周期是辅助角公式在高考三角题中地应用对于形如y=asinx+bcosx地三角式,可变形如下:y=asinx=bcosx-22ab、.ab(sinxcosx).2-22,27ab.ab由于上式中地ja与,b地平方和为1,故可记,a=cos0,ba2b2a2b2,a2b2,a2b2y.a2b2(sinxcoscosxsin)a2b2sin(x)。由此我们得到结论:asinx+bcosx=v'a2b2sin(x),(*)其中。由.acos,b

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论