




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、若打印/复印本文档,请选择双面格式或用废纸题目摘自“”,解答参考行列式答 上述行列式中 x 的 3 次方的系数为 -1.分析 根据行列式的定义, 4 阶行列式写成S和式后, 通项为(-1)t ( j1 , j2 , j3 , j4 ) aaaa1 j1 2 j2 3 j3 4 j4其中 j1, j2, j3, j4 为 1, 2, 3, 4 的全排列, t( j1, j2, j3, j4)表示排列 j1, j2, j3, j4 的逆序数. 注意到通项中的 aij 取自不同的行和不同的列, 上述 4 阶行列式的展开式中只有(-1)t( 2134)a12a21a33a44 = (-1)1x1xx
2、= -x3这一项含有 x3, 其系数为-1.(a +1)2(b +1)2(c +1)2(d +1)2(a +1)2(b +1)2(c +1)2(d +1)2(a +1)2(b +1)2(c +1)2(d +1)2(a + 2)2(b + 2)2(c + 2)2(d + 2)2(a + 2)2(b + 2)2(c + 2)2(d + 2)2(a + 3)2(b + 3)2(c + 3)2(d + 3)2a2b2c2d 2(把第一列的-1 倍加到第四列)证明a26a + 96b + 96c + 96d + 9= b2(把第二列的-1 倍加到第三列)c2d 22a + 3 6a + 92b + 3
3、6b + 92c + 3 6c + 92d + 3 6d + 9a2= b2(最后两列成比例) = 0.c2d 2解 因为a, b, g是方程 x3 + px + q = 0 的三个根, 所以1版本号:2011/5/14z990303 ; 272365083.coma b g设a, b, g是方程 x3 + px + q = 0 的三个根, 则行列式 ga b 的值是多少?b g a证明行列式a2 (a +1)2 (a + 2)2 (a + 3)2b2(b +1)2(b + 2)2(b + 3)2c2(c +1)2(c + 2)2(c + 3)2d 2 (d +1)2 (d + 2)2 (d
4、+ 3)2= 0.x x 1 01 x 2 32 3 x 21 1 2 x中, x 的 3 次方的系数是多少?若打印/复印本文档,请选择双面格式或用废纸题目摘自“”,解答参考a3 = -pa - q,b3 = -pb - q,g3 = -pg - q,而且x3 + px + q = (x - a)(x - b)(x - g)= x3 + (-a-b-g)x2 + (ab+bg+ga)x + (-abg)比较上式两端各项系数以及常数项得-a-b-g = 0, ab+bg+ga = p, -abg = q.于是利用“对角线法则”可得a bgab ggba= a3 + b3 + g3 -gab -b
5、ga -abg= (-pa - q) + (-pb - q) + (-pg - q) - 3abg= p(-a-b-g) - 3(q + abg)= 0.另解 因为a, b, g是方程 x3 + px + q = 0 的三个根, 所以a+b+g = 0,于是利用行列式的性质可得a bg ab gga + b + g a + b + g a + b + g11ag1bab ´1gbagba= (a+b+g) g= 0.a ´1b矩阵若 n 阶非零实数矩阵的转置和它的伴随相等, 怎么证明它可逆?证明 记 A 的转置为 AT, A 的伴随矩阵为 A*, A 的秩为 r(A).()
6、()()d-a bbTac d(1) 当 n = 2 时, 设 A =, 则 A* =, A =.-cac db故由条件可得 a = d, b = -c, 而且 a, b 不全为 0.于是|A| = ad - bc = a2 + c2 > 0, 因而 A 可逆.(2) 当 n > 2 时, 由条件可知 0 < r(A) = r(AT) = r(A*).又因为r(A) < n-1 时, A 中各元素aij 的式Mij = 0,式Aij = 0,相应的代数.因而 A* = 0, 此时 r(A*) = 0, 这与r(A*) = r(A) > 0若 r(A) = n-1,
7、 则 A*不等于 0, 且 AA* = 0.可见 0 < r(A*) £ 1, 因而 r(A*) = 1 < n-1 = r(A), 这与 r(A*) = r(A).上述表明, r(A) 只能等于 n, 即 A 可逆. 证明 因为 A 不等于零, 所以 AAT 不等于 0.假若 A 不可逆, 则|A| = 0, 于是 AAT = AA* = |A|E = 0,所以 A 可逆.!证明 设 A 中某个元素 aij 不等于零, 则 AAT 的第 i 行第 i 列处的元素为(ai1, ai2, ., ain)(ai1, ai2, ., ain)T = a 2 + ai22 + .
8、 + ain2 > 0.i12版本号:2011/5/14z990303 ; 272365083 .com若打印/复印本文档,请选择双面格式或用废纸题目摘自“”,解答参考又因为 AAT = AA* = |A|E, 比较等式两端的第 i 行第 i 列处的元素可得2|A| = ai12 + ai22 + . + ain > 0,所以 A 可逆.【注 1】由上面的证明可以看出|A| > 0.【注 2】当 n > 2 时, 由 AAT = AA* = |A|E 可得|A|2 = |A|AT| = |AAT| = |AA*| = |A|n,因而|A|n-2 = 1. 进而由|A|
9、> 0 得|A| = 1.【注 3】当 n > 2 时, 由上面的|A| = 1 可得 AAT = AA* = |A|E = E, 即 A 为正交矩阵.设 A 为 n 阶方阵, 对某整数 k > 1, Ak = 0, 证明(E-A)-1 = E + A + A2 + . + Ak-1.证明 因为 Ak = 0, 所以(E-A)(E + A + A2 + . + Ak-1)= E(E + A + A2 + . + Ak-1) - A(E + A + A2 + . + Ak-1)= E + A + A2 + . + Ak-1 - A - A2 - . - Ak-1 - Ak= E
10、,可见(E-A)-1 = E + A + A2 + . + Ak-1.对称方阵 A 满足 A2 = 0. 证明 A = 0. 设 A 为 m 行 n 列的矩阵, B = ATA, 其中 AT 表示 A 的转置, 则有以下结论:(其中 B = ATA)命题 1 线性方程组 Ax = 0 的解一定是 Bx = 0 的解. 证明 设向量 a 是 Ax = 0 的解, 则 Aa = 0.于是 Ba = ATAa = AT0 = 0.可见 a 是 Bx = 0 的解.命题 2 线性方程组 Bx = 0 的解一定是 Ax = 0 的解. 证明 设向量 b 是 Bx = 0 的解, 则 Bb = 0.于是
11、bTBb = bT0 = 0.(其中 B = ATA)另一方面, bTBb = bTATAb = (Ab)T(Ab) = |Ab|2, 其中|Ab|表示向量 Ab 的长度. 由上述两个方面可得|Ab|2 = 0, 因而|Ab| = 0, 进而得 Ab = 0.可见 b 是 Ax = 0 的解.(其中 B = ATA)命题 3 线性方程组 Ax = 0 与 Bx = 0 同解.证明 综合上面题 1 和命题 2 立得.(注意: 线性方程组 Ax = 0 含有 m 个方程 n 个未知数; Bx个未知数. 根据命题 3, 它们具有相同的基础解系) 命题 4 秩(A) = 秩(B).= 0 含有 n 个
12、方程 n(其中 B = ATA)证明 因为线性方程组 Ax = 0 与 Bx = 0 的基础解系中所含解向量的个数分别为 n-秩(A) 与 n-秩(B),3版本号:2011/5/14z990303 ; 272365083 .com若打印/复印本文档,请选择双面格式或用废纸题目摘自“”,解答参考故由命题 3 可见 n-秩(A) = n-秩(B).因而秩(A) = 秩(B).推论 若对称方阵 A 满足 A2 = 0, 则 A = 0.证明 设对称方阵 A 满足 A2 = 0, 则 ATA = AA = A2 = 0, 因而秩(ATA) = 0.由命题 4 可知秩(A) = 秩(ATA) = 0,
13、所以 A = 0.【注 1】n 维向量 a = (a1, a2, ., an)的长度|a| =a2 + a2 +"a2 .12n【注 2】若 n 维向量 a = (a1, a2, ., an), 则 aaT = a2 + a2 +"a2 = |a|2.12n【注 3】n 维向量 a = 0 当且仅当 |a| = 0.【注 4】设 A 为 m 行 n 列的矩阵, AT 表示 A 的转置, 则 AT 为 n 行 m 列的矩阵. 记 A 的第一行为 A1, 第二行为 A2, ., 第 m 行为 Am,则 AT 的第一列为 A1T, 第二列为 A2T, ., 第 m 列为 AmT.
14、因而 AAT 的主对角线上的元素依次为A1A1T,A2A2T, ., A AT,m m即|A1|2, |A2|2, ., |Am|2.命题 5 设 A 为 m 行 n 列的矩阵满足 AAT = 0, 则 A = 0. 证明 因为 AAT = 0, 所以|A1|2 = |A2|2 = . = |Am|2 = 0, 因而 A1 = A2 = . = Am = 0, 可见 A = 0.推论 若对称方阵 A 满足 A2 = 0, 则 A = 0. 证明 设对称方阵 A 满足 A2 = 0, 则 AAT = AA = A2 = 0,根据命题 5 可得 A = 0.定理 设 A 为 n 阶实对称矩阵, 则
15、存在正交矩阵 Q 使得æ l1öQ-1AQ = QTAQ = çl2÷ ,ç÷%ç÷lèn ø其中l1, l2, ., ln 为 A 的特征值.æ l1ö【注 4】把上述定理中的矩阵çl2÷ 记为L, 则ç÷%ç÷lèQ-1A2Q = Q-1AAQ = Q-1An ø-1AQ = LLæ lö÷æ lö æ l2ö÷1
16、11ççl÷ çll2=÷ .22ç2ç÷ ç÷%ç÷ ç÷ç÷lllèn ø èn ø2èn ø推论 若对称方阵 A 满足 A2 = 0, 则 A = 0. 证明 设对称方阵 A 满足 A2 = 0, 且 A 的特征值为l1, l2, ., ln.4版本号:2011/5/14z990303 ; 272365083 .com若打印/复印本文档,请选择双面格式或用废纸题目摘自“”
17、,解答参考æ lö÷÷21ç则存在正交矩阵 Q 使得l2-1 2-1= Q A Q = Q 0Q = 0.ç2%ç÷l2èn øæ l1ö÷çl2因而l1 = l2 = . = ln = 0, 即L = 0.ç÷%ç÷lèn ø故由 Q-1AQ = L 得 A = QLQ-1 = Q0Q-1 = 0.()1i, 其中 i2 = -1, 可以验证 A2 = 0 但是 A【注 5】对于 2 阶复对称矩
18、阵 A =i -1不等于 0.【注 6】对于 2 阶矩阵 A =()001, 可以验证 A2 = 0 但是 A 不等于 0.0A, B 为可逆矩阵, 求证 A-1B + B-1A = E.答 该命题不成立.例如: 取 A = B = E, 则 A, B 为可逆矩阵, 但是 A-1B + B-1A = 2E.设 A 是 n 阶矩阵, 证明存在可逆矩阵 B 和等幂阵 C 使 A = BC. ()EO O证明 设 A 的等价标准形为 D =, 则存在可逆矩阵 P, Q 使得 PAQ = D,O且 D2 = D. 于是令 B = P-1Q-1, C = QDQ-1, 则可直接验算 A = BC, 且
19、C2 = C.A, B 为同阶方阵, A2 = E, B2 = E, 则(AB)2 = E 的充要条件是 AB = BA. 证明 若(AB)2 = E, 则BA = E(BA)E = (A2)(BA)(B2) = (AA)(BA)(BB) = A(AB)(AB)B = A(AB)2B = AEB= AB.反之, 若 AB = BA, 则(AB)2 = (AB)(AB) = A(BA)B = A(AB)B = (AA)(BB) = A2B2 = EE = E.设 A 可逆, 求证(A*)-1 = (A-1)*. 证明 因为 A 可逆, 所以|A| ¹ 0, 而且由 AA* = |A|E
20、 得A* = |A|A-1.用 A-1 替换(1)式中的 A 可得(A-1)* = |A-1|(A-1)-1.在(1)式两边分别求逆可得(1)(2)5版本号:2011/5/14z990303 ;272365083.com若打印/复印本文档,请选择双面格式或用废纸题目摘自“”,解答参考(A*)-1 = (|A|A-1)-1.(3)比较(2)式和(3)式可得(A*)-1 = (A-1)*.设 A 为 n 阶可逆矩阵. 证明: (A*)* = |A|n-2A. 证明 当 A 为 n 阶可逆时, |A| ¹ 0, 并且由 AA* = |A|E 得A* = |A|A-1.|A|A*| = |A
21、|n.由(2)得|A*| = |A|n-1.用 A*替换(1)式中的 A 可得(A*)* = |A*|(A*)-1.进而由(1), (3)式可得(A*)* = |A*|(A*)-1 = |A|n-1(|A|A-1)-1 = |A|n-1|A|-1A = |A|n-2A.(1)(2)(3)(4)【注 1】对于 2 阶矩阵 A =æ a b ö , A* =æ d-b ö , (A*)* =æ a b ö = A.ç c d ÷ç -ca÷ç c d ÷èø&
22、#232;øèø【注 2】当 n > 2 时, 对于 n 阶可逆矩阵 A, 上面已经证明(A*)* = |A|n-2A.【注 3】当 n > 2 时, 对于 n 阶不可逆矩阵 A, 若 A < n-1, 则 A* = 0, (A*)* = 0; 若秩(A) = n-1, 且由 AA* = |A|E = 0 得秩(A) + 秩(A*) £ n, 因而秩(A*) £ 1, 进而(A*)* = 0.设 A, B 均为 n 阶可逆矩阵, 证明: (AB)* = B*A*.证明 因为 A, B 均为 n 阶可逆矩阵, 所以|A|
23、85; 0, |B| ¹ 0, AB 也可逆,AA* = |A|E 得并且由= |A|A-1.A*(1)由 BB* = |B|E 得= |B|B-1.B*(2)用 AB 替换(1)式中的 A 可得(AB)* = |AB|(AB)-1 = |A|B|(B-1A-1) = (|B|B-1)(|A|A-1) = B*A*.Show that if AB is invertible, so is A. Proof If AB is invertible, then we have (AB)D = I for some matrix D. It follows that A(BD) = I a
24、nd, we conclude that A must be invertible. Note that theholds in case A is a square matrix. Show that if AB is invertible, so is B. Proof If AB is invertible, then we have D(AB) = I for some matrix D. It follows that (DA)B = I and, we conclude that B must be invertible. Note that the6版本号:2011/5/14z9
25、90303 ; 272365083 .com若打印/复印本文档,请选择双面格式或用废纸题目摘自“”,解答参考holds in case B is a square matrix. Show that if A is invertible, then det(A-1) = 1/det(A). Proof We havedet(A)det(A-1) = det(AA-1) = det(I) = 1, where I is the identity matrix of dimension equal to that of A. Therefore det(A-1) = 1/det(A).Let A
26、and P be square matrices, with P invertible. Show det(P-1AP) = det(A). Proof Note that det(P-1), det(A) and det(P) are numbers, so we have det(P-1AP) = det(P-1)det(A)det(P) = det(A)det(P)det(P-1) = det(APP-1) = det(A).Let A be a 3 by 3 matrix. Show that for any real number s, det(sA) = s3det(A). Pro
27、of Lehe 3 by 3 identity matrix, then sI is a 3 by 3 diagonal matrix all ofwhose entries on diagonal are s. So det(sI) = s3 anddet(sA) = det(sIA) = det(sI)det(A) = s3det(A).(a) Prove that if a matrix B can be obtained from a matrix A by a single row operation, then A can be obtained from B by a singl
28、e row operation. (b) Use the previous fact to prove by induction that if B can be obtained from A byk row operations (k ³ 1), then A can be obtained from B by k row operations. (c) Prove that a matrix that contains only zeros can not be row equivalent to a matrix that contains at least one non-
29、zero entry. Proof (a) Assume that B can be obtained from a matrix A by interchanging the ithand the jth rows. Then A can be obtained from B by the same operation, i.e.,interchanging the ith and the jth rows. For instance, let A =æ 12 öand B =æ 34 ö ,ç 3 4 ÷ç 1 2
30、247;èøèøwhere B can be obtained from a matrix A by interchanging the first and the cecond rows. It is easy to see that if we interchange the first and the cecond rows of B then we get A. æ b11"b1n öæ a11"a1n ö= ç÷= ç÷Now, if B#can
31、 be obtained from A#byç b÷ç a÷" b" aè m1mn øè m1mn ømultiplying row i by t ¹ 0. Then the ith row of B is(tai1, tai2, , tain),while the kth row of B is equal to that of A for all 1 £ k ¹ i £ m, i.e.,7版本号:2011/5/14z990303 ; 27236508
32、3 .com若打印/复印本文档,请选择双面格式或用废纸题目摘自“”,解答参考æ a11a1n öa12#ta"ç÷#B =ç tata ÷ ith row ."çin ÷i1i 2#ç÷ç a÷a"aè m1mn øm2Thus, multiplying row i by t-1 in B, one obtainsæö÷a11a12#t × t -1a"a1n#ç#&
33、#231; t × t -1a÷ = A.t × t -1a"çin ÷÷i1i 2ç#a#ç÷a""aèm1mnøm2æ b11b1n öç÷Finally,supposethatB=#canbeobtainedfromAç b÷" bè m1mn øæ a11a1n ö"=ç÷#by adding t times
34、row j to row i. Then the ith row of B isç a÷" aè m1mn ø(ai1+taj1, ai2+taj2, , ain+tajn),while the kth row of B is equal to that of A for all 1 £ k ¹ i £ m, that is to say,æ#ai 2 + ta j 2#a j 2#öç a + tai1j1ain + ta jn ÷ ith row"B =
35、1;÷÷#aj1#a jn#.ç"÷ jth rowçç÷èøBy adding -t times row j to row i in B, one obtainsæ#ö÷jn ÷ç a+ ta + (-t)aa + ta+ (-t)a+ ta + (-t)a"aççi1j1j1i 2j 2j 2injn÷ = A.÷#ça j1#each typea j 2#of elementary
36、"a jn#ç÷èNote thatøoperationmay be performed by matrixmultiplication, using square matrices called elementary operators. If a matrix Bcan be obtained from a matrix A by a single row operation, then we haveB = EAfor some elementary row operator E. Consequently, A = E-1B, i.e.
37、, A can beE-1obtained from B by a single row operation since operator.is also an elementary row(b) For k = 1, it follows by (a). Now, suppose that we have proven (b) for k = n³ 1 and that B can be obtained from A by n+1 row operations. In view of the8版本号:2011/5/14z990303 ; 272365083 .com若打印/复印本
38、文档,请选择双面格式或用废纸题目摘自“”,解答参考following sequenceA = A0 ® A1 ® A2 ® ® An ® An+1 = B,where Ai is obtained from Ai-1 by a single row operation (1 £ i £ n+1), hence An can be obtained from A by n row operations. By (a) and the hypothesis, A can be obtained from An by n row
39、operations and An can be obtained from B by a single row operation. Consequently, A can be obtained from B by n+1 row operations.(c) In view of (b), it suffices to show that a matrix that contains at least one non-zero entry can not be obtained from a matrix that contains only zeros by a single row
40、operation. But this is obvious since any type of elementary row operation makes a zero matrix into a zero matrix.线性方程组若 AX = 0 的解一定是 BX = 0 的解, 则 B 的行向量都能表示成 A 的行向量的线性组合. ( )A证明 令 C 为分块矩阵(注意 A 与 B 的列数相同, 都等于 X 的行数),B则 AX = 0 与 CX = 0 同解. 因而秩(A) = 秩(C).(注意AX = 0 的基础解系中解向量的个数 = n - 秩(A), 其中n 表示未知数的个数,
41、 即 X 的行数, 亦即 A 的列数;同时 CX = 0 的基础解系中解向量的个数 = n - 秩(C)设 A 中某 r 行的极大无关组.A 的行向量组的极大无关组, 则这 r 行也C 的行向量组(注意, 秩为 r 的向量组中, 任意 r 个线性无关的向量都极大无关组)因而 B 的行向量都能由这 r 行线性表示, 进而能由 A 的行向量线性表示, 即能表示成 A 的行向量的线性组合.Suppose an m´n matrix A has n pivot columns. Explain why for each b Î Rm the equation Ax = b has
42、at most one solution. Answer If both x1 and x2 are solutions of Ax = b, then A(x1 - x2) = Ax1 - Ax2 = b - b = 0.But Ax = 0 has at most one solution according to the hypothesis. It follows that x1 - x2 = 0, i.e. x1 = x2.齐次线性方程组 Ax = 0 有唯一零解是线性方程组 Ax = b 有唯一解的(). (A) 充分必要条件;(B) 充分条件;(C) 必要条件;(D) 无关条件.
43、 答 C.9版本号:2011/5/14z990303 ; 272365083 .com若打印/复印本文档,请选择双面格式或用废纸题目摘自“”,解答参考设 A, B 都是 n 阶非零矩阵, 且 AB = 0, 则 A 和 B 的秩(). (A) 必有一个等于零;(B) 都小于 n;(C) 必有一个等于 n;(D) 有一个小于 n. 答 B.设 A = 4´6 矩阵, 则齐次线性方程组 Ax = 0 (). (A) 无解;(B) 必有非零解;(C) 只有零解;(D) 不一定. 应该选哪个? 为什么?答 选 B因为 A 是 4´6 距阵, 所以 秩(A) £ 4,而齐次
44、线性方程组 Ax = 0 中未知数的个数为 6.由秩(A) < 6 可知 Ax = 0 必有非零解.设 3 元齐次线性方程组ax1 + x2 + x3 = 0x1 + ax2 + x3 = 0x1 + x2 + ax3 = 0(1) 确定当 a 为何值时, 方程组有非零解;(2) 当方程组有非零解时, 求出它的基础解系和全部解. æ a1 ö1解 (1)该齐次线性方程组的系数矩阵 A =ç 1 a 1 ÷ , |A| = (a+2)(a-1)(a-1).ç 1a ÷1èø该齐次线性方程组有非零解的充分必要条件
45、是: |A| = 0,即 a = -2 或 1.(2) 当 a = -2 时, 对 A 进行初等行变换, 化为如下行最简形:æ 1-1ö0ç 0 1 -1÷ç 00 ÷0èø由此可得x1 - x3 = 0,x2 - x3 = 0,即x1 = x3 ,x2 = x3 ,于是得到基础解系:(1, 1, 1)T,10版本号:2011/5/14z990303 ; 272365083 .com若打印/复印本文档,请选择双面格式或用废纸题目摘自“”,解答参考通解(x1, x2, x3)T = k(1, 1, 1)T,其中 k
46、为任意实数.当 a = 1 时, 对 A 进行初等行变换, 化为如下行最简形:æ 11 ö1ç 0 0 0 ÷ç 00 ÷0èø由此可得x1 + x2 + x3 = 0,即x1 = -x2 - x3.于是得到基础解系:(-1, 1, 0)T,(-1, 0, 1)T,通解(x1, x2, x3)T = k1(-1, 1, 0)T + k2(-1, 0, 1)T,其中 k1, k2 为任意实数.Suppose CA = In (the n´n identity matrix). (1) Show that t
47、he equation Ax = 0 has only the trivial solution. (2) Explain why A cannot have more columns than rows. Proof (1) Suppose that Ax = 0 has a nontrivial solution x ¹ 0. Then on one handC(Ax) = C0 = 0,and on the other C(Ax) = In x = x, and we arrive at a contradiction. Therefore Ax =0 cannot have
48、a nontrivial solution.(2) If A had more columns than rows, then A would not have a pivot in every column and the homogeneous equation Ax = 0 would have a nontrivial solution, which would contradict (1).Suppose AD = Im (the m´m identity matrix). Show that for any b Î Rm, the equation Ax = b
49、 has a solution and explain why A cannot have more rows than columns. Proof (1) For any b Î Rm, we have ADb = Imb = b, which means that x = Db is a solution to Ax = b.(2) Suppose that A has n columns. It follows that A has m rows since AD = Im. Then we have m = rank(Im) = rank(AD) £ rank(A
50、) £ n. So A cannot have more rows than columns. Another possible proof: Note that AD = Im implies DTAT = Im. It follows from (2) of the above exercise that AT cannot have more columns than rows, i.e., A cannot have more rows than columns. 11版本号:2011/5/14z990303 ; 272365083 .com若打印/复印本文档,请选择双面格式
51、或用废纸题目摘自“”,解答参考Show that if the columns of B are linearly dependent, then so are the columns ofAB. Proof If the columns of B are linearly dependent, then Bx = 0 for a nonzero vector x. Then (AB)x = A(Bx) = 0 and therefore the columns of AB are linearly dependent.Suppose that an n´n matrix K can
52、not be row reduced to In. Show that the columns of K are linearly dependent. Proof Since the n´n matrix K cannot be row reduced to In, we have rank(K) < n. Therefore the columns of K are linearly dependent.If L is n´n and the equation Lx = 0 has only the trivial solution, show that the
53、columns of L span Rn. Proof If L is n´n and the equation Lx = 0 has only the trivial solution then the columns of L are linearly independent and hence span Rn.Let A be the augmented matrix of a linear system and C its augmented matrix of the corresponding homogeneous linear system We assume tha
54、t the linear system encoded by A is consistent. (a) Prove that if (c1, , cn) and (c1¢, , cn¢) are two solutions (possibly identical) to the linear system encoded by A, then (c1-c1¢, , cn-cn¢) (i.e. their difference) is a solution to the linear system encoded by C. (b) Deduce that
55、 if the linear system encoded by C has only the trivial solution (0, , 0), then the linear system encoded by A has exactly one solution. (c) Prove that if the linear system encoded by C has more than one solution, then the linear system encoded by A has infinitely many solutions.Proof (a) If (c1, ,
56、cn) and (c1¢, , cn¢) are two solutions to the linear system encoded by A, then we have12版本号:2011/5/14z990303 ; 272365083 .comæ a11 " a1n0 öç a" a0 ÷ç 122n÷#ç÷è am1 " amn 0 øæ a11 " a1nb1 öç a" ab
57、7;ç 122n2 ÷#ç÷è am1 " amn bm ø若打印/复印本文档,请选择双面格式或用废纸题目摘自“”,解答参考a1n öæ c1¢ öæ b1 öæ a11"a1n öæ c1 öæ b1 öæ a11"ç÷ç÷ = ç÷ç÷ç÷ = ç÷ .#
58、and#ç a÷ç c ÷ç b ÷ç a÷ç c¢ ÷ç b ÷"a" amn øè n øè m ømn øè n øè m øèèm1m1Hencea1n öæ c1 - c1¢ öa1n ö éæ c1 öæ c1¢
59、246;ùæ a11æ a11""ç÷ç÷ = ç÷ êç÷ - ç÷ú#a#÷ êç c ÷ç c¢ ÷úç a÷ç c- c¢ ÷ç a""a"è m1mn øè nn øè m1ø ë
60、èn øèn øûmna1n öæ c1¢ öæ b1 ö æ b1 öæ a11a1n öæ c1 öæ a11"æ 0 ö= ç÷ç÷ - ç÷ç÷ =ç÷ - ç# ÷ = ç # ÷ .#ç a÷ç c
61、7;ç a÷ç c¢ ÷ç b ÷ ç b ÷ ç 0 ÷"a" aè m1mn øè n øè m1mn øè n øè m ø è m ø è øThis means (c1-c1¢, , cn-cn¢) is a solution to the linear system encoded by C.(b) Suppose that (c1, , cn) and (c1¢, , cn¢) are two different solutions to the linear system encoded by A, then (c1-c1¢, , cn-cn¢
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论