数学建模:数码相机定位模型_第1页
数学建模:数码相机定位模型_第2页
数学建模:数码相机定位模型_第3页
数学建模:数码相机定位模型_第4页
数学建模:数码相机定位模型_第5页
免费预览已结束,剩余20页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规那么.我们完全明白,在竞赛开始后参赛队员不能以任何方式包括、电子邮件、网上咨询等与队外的任何人包括指导教师研究、讨论与赛题有关的问题.我们知道,抄袭别人的成果是违反竞赛规那么的,如果引用别人的成果或其他公开的资料包括网上查到的资料,必须根据规定的参考文献的表述方式在正文引用处和参考文献中明确列出.我们郑重承诺,严格遵守竞赛规那么,以保证竞赛的公正、公平性.如有违反竞赛规那么的行为,我们将受到严肃处理.我们参赛选择的题号是从A/B/C/D中选择一项填写:我们的参赛报名号为如果赛区设置报名号的话:所属学校请填写完整的全

2、名:参赛队员打印并签名:1.2.3.指导教师或指导教师组负责人打印并签名:日期:年月日高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号由赛区组委会评阅前进行编号:赛区评阅记录可供赛区评阅时使用:评阅人评分备注全国统一编号由赛区组委会送交全国前编号:数码相机定位模型摘要本文利用光学原理建立物体成像位置关系的数学模型,解决了相机系统标定中的如何确定靶标圆心对应像坐标和固定相机的相对位置等问题.针对如何确定靶标圆心对应像坐标问题,我们分析讨论了各种影像分析方法,基于针孔成像原理和相机坐标系变换矩阵的思想,建立了线性相机模型,利用透视变换矩阵确定摄像机的位置标定思想给出算法,通过找靶标和像平面上对

3、应公切线切点的方法取点,利用取定的点和算法求得相机成像内外参数,利用MATLA编程求解,求得靶标圆心对应像坐标.结果如下:在问题1要求的三维坐标系下A,B,C,D,E圆心对应的像坐标是(单位:mm:(-50.78,50.93,417.20),(-24.42,48.88,417.20),(32.77,44.44,417.20),(18.33,-32.20,417.20),(-60.37,-31.53,417.20).针对设计一种方法检验我们模型的问题,我们采用最小二乘法拟合椭圆,确定中央点,改变所选取的标定点,求得多组中央的值,比拟每组中央值与拟合的中央点,差异不大.并对方法的精度和稳定性进行了

4、讨论.针对如何确定两部固定相机相对位置的问题,以物坐标为中间变量,通过坐标矩阵的变换建立模型,给出算法,最终确定两部相机的相对位置.本论文通过两种方法比照分析,结果相对吻合,模型的可信度较高.考虑到畸变因素的影响,本论文进行了模型改良,使模型具有更高的精度,有较强的推广性.坐标系变换矩阵公切线切点关键词:针孔成像线性相机模型最小二乘法拟合椭圆1、问题重述数码相机定位在交通监管电子警察等方面有广泛的应用.所谓数码相机定位是指用数码相机摄制物体的相片确定物体外表某些特征点的位置.最常用的定位方法是双目定位,即用两部相机来定位.对物体上一个特征点,用两部固定于不同位置的相机摄得物体的像,分别获得该点

5、在两部相机像平面上的坐标.只要知道两部相机精确的相对位置,就可用几何的方法得到该特征点在固定一部相机的坐标系中的坐标,即确定了特征点的位置.于是对双目定位,精确地确定两部相机的相对位置就是关键,这一过程称为系统标定.标定的一种做法是:在一块平板上画假设干个点,同时用这两部相机照相,像位法是圆,中1得组对无法的形像图到这些点在它们像平面上的像点,利用这两点的几何关系就可以得到这两部相机的相置.然而,无论在物平面或像平面上我们都直接得到没有几何尺寸的“点.实际的做在物平面上画假设干个圆称为靶标,它们心就是几何的点了.而它们的像一般会变如图1所示,所以必须从靶标上的这些圆的把圆心的像精确地找到,标定

6、就可实现.靶标上圆的像有人设计靶标如下,取1个边长为100mm方形,分别以四个顶点对应为A、C、D、的正E为圆心,12mm为半径作圆.以AC边上距离A点30mm处的B为圆心,12mm为半径作圆,如图2所示略.用一位置固定的数码相机摄得其像,如图3所示略.问题:1建立数学模型和算法以确定靶标上圆的圆心在该相机像平面的像坐标,这里坐标系原点取在该相机的焦点,x-y平面平行于像平面;2对由图2、图3分别给出的靶标及其像,计算靶标上圆的圆心在像平面上的像坐标,该相机的像距即焦点到像平面的距离是1577个像素单位1毫米约为3.78个像素单位,相机分辨率为1024X786;3设计一种方法检验你们的模型,并

7、对方法的精度和稳定性进行讨论;4建立用此靶标给出两部固定相机相对位置的数学模型和方法.2、模型假设2.1 假设相机镜头凸透镜前后两侧弧度、介质均相同,即镜头前后两侧折射率相同.2.2 假设相机镜头是很完善的,没有缺损或倾斜等外部形变.2.3 假设物平面和像平面的中央与镜头的光学中央在同一条直线光轴上.2.4 假设物平面的点经透镜折射后都可以被像平面接到.2.5 假设问题1中靶标和像平面的图形是的.2.6 像平面上点的像坐标的原点为该相机的光学中央,x-y平面平行与像平面2.7 假设不考虑照相机畸变.2.8 有效焦距f为相机镜头光学中央到像平面的距离,即像距.3、符号说明OfXfyf:图像像素坐

8、标系(u,v):像点像素坐标OXY:图像物理坐标系(X,Y):像点物理坐标(Xc,yc,zc):物点相机坐标系OxwywZw:世界坐标系(Xw,yw,zw):物点世界坐标R:旋转正交变换矩阵T:平移变换矩阵f:有效焦距M1:为相机成像内部参数阵M2:为相机成像外部参数阵M:称为投影矩阵4、模型建立及求解4.1 问题14.1.1 问题分析本问题的整体思路是:在仅物平面和像平面,相机的其他属性参数未知的前提下,建立照相机模型,确定靶标(物平面)上的点到该照相机像平面的像坐标的映射关系,其中包括照相机成像系统内外几何及光学参数的标定,从而到达只要给定标靶上的点,就可直接通过模型求得其像坐标的目的.在

9、具体建立照相机模型时,由于照相机与摄相机在成像原理上没有本质区别,因此沿用现有比拟成熟的摄机标定技术的理论思想.对于问题1,根据假设,靶标和像平面的图形是的,利用针孔成像原理建立模型,引入常用的相机模型坐标体系,确定各坐标体系的转换关系,建立线性相机模型,利用透视变换矩阵的相机标定技术的思想给出算法,求取相机模型的内部参数和外部参数.考虑到上述模型是基于靶标点与像点已确定的前提下才能实现的,而实际上我们看到的只是靶标上的假设干个圆和其拍摄的像(圆的变形图),不是模型中要求的“点.因此我们结合光学成像原理和两图形几何位置关系确定假设干组特殊靶标点和对应像点.将靶标点与对应像点带入模型,求得相机成

10、像系统的内外参数.此时只要给出靶标上的点,即可求得其像坐标.建模流程图如下:4.1.2 问题1模型建立:4.1.2.1 坐标系为了定量的描述光学成像过程,计算机一般采用右手定那么定义坐标体系,即图像像素坐标系,图像物理坐标系,相机坐标系和世界坐标系,如图1.【1】0Qtw,Tw,2«)Fu(X叫Yc)FdCfdUd)图1图像像素坐标系:在图像上定义直角坐标系Ofxfyf,本模型中原点Of在图像平面的左下角,u,v是以像素为单位的图像坐标系的坐标.图像物理坐标系:用物理单位表示图像像素位置,定义坐标系OXY,原点O定义在相机与图像平面交点,X,Y是以毫米为单位的图像坐标系的坐标.相机坐

11、标系:相机坐标系Oxyz是固定在相机上的直角坐标系,其原点O定义在相机的光心,x,y轴分别平行于图像物理坐标系的x,y轴,zc与光轴重合,x,y,z是物点相机坐标.世界坐标系:坐标系Oxwywzw描述环境中任何物体的位置,根据具体情况而定.4.1.2.2 常用坐标系变换关系2D从世界坐标系xw,yw,zw到相机坐标系x,y,z的变换,世界坐标系中的点到相机坐标系的变换可由一个正交变换矩阵R和一个平移变换矩阵T表示:r13Ixw23|yw|+T(1)用齐次坐标和矩阵形式表示为:-x1yFlz0TJ一Tyw11ZwJ一其中:T=tx,ty,tzT是世界坐标系原点在相机坐标系中的坐标,ri2B正交旋

12、转矩阵R=r4r5r6:7几r9_ri2r22r32=1且矩阵元素满足:r42r52r62=1222,rr8l=1正交旋转矩阵中的三个独立变量r1,r2,r3,加上平移矩阵中的tx,ty±总共有6个参数决定了相机光轴在世界坐标系中空间位置,因此这六个参数称为相机外部参数.(2)从相机坐标系到图像物理坐标系的理想投影变换即针孔模型下的理想透视投影变换,有下式成立X=fx/zY=fy/z(f为有效焦距)(3)同样用齐次坐标和矩阵表示上式为Xf000zY卜0f001_0010将上式的图像坐标系进一步转化为图像坐标系:-U0=X/dx=SxX-V0=Y/dy=SyY(5)齐次坐标表小为:(6

13、)其中,U0,V0是图像中央(光轴与图像平面的交点)坐标,dx,dy分别为一个像素在X与Y方向上的物理尺寸,Sx=1/dx,Sy=1/dy分别为X与Y方向上的采样频率,即单位长度的像素个数.由此可得物点P与图像像素坐标系中像点P的变换关系:u-u0=fsxx/z=fxx/zv-V0=fSyy/z=fyy/zfx,fy,U0,V0等4个其中,fx=fSxh=fSy分别定义为X和Y方向的等效焦距.参数只与相机内部结构有关,因此称为相机内部参数3世界坐标系与图像物理坐标系变换关系共线方程Xu-u011例ZwtxffxYv-V0f=f31%.32Xw/Xwtz21人,吐丫亚,.ty3',32x

14、w,33.tz(8)齐次坐标表小为:"ulfx00fyU0V0010-1J01R0TXwITywZw1=M1M2X=MX上式就是摄影测量学中最根本的共线方程,说明物点、光心和像点这三点必须在同一条直线上.这是针孔模型或者中央投影的数学表达式.根据共线方程,在相机内部参数确定的条件下,利用假设干个的物点和相应的像点坐标,就可以求解出相机的六个外部参数,即相机的光心坐标和光轴方位的信息.4.1.3 算法设计利用透视变换矩阵相机标定思想【3】,写成具体算法如下:将9式写为:"u1一色1m12色3m21m22m231J口31m32m33m(4m24m34xwI|ywZwJ一(10)

15、mj为变换矩阵mmj的线性方程.其中XwywZw11是空间三维点的世界坐标,u,v,1为相应的图像坐标,的元素.它包含三个方程,整理消去Z后,可得到如下两个关于关于(11)mxw“wm13Zwm-um-uywm-uz=umm2wmywm.m-V531一Vywmvzn=Vm方程11描述了三维世界坐标点xw,yw,Zw,1与相应图像点u,v,1之间的关系.如果三维世界坐标和相应的图像坐标,将变换矩阵看作未知数,那么共有12个未知数.对于每一个物体点,都有如上的两个方程,因此,理论上,取6个物体点,就可以得到12个方程,从而求得变换矩阵M的系数.但特殊的是,由于该方程没有常数项,即方程形式为AX=0

16、,因此无法直接求解.(1)求解M,Lr,r,t._、>*rA'1.1.*'>_.»»»*r*、>一?般可做如下变换令M=m34M,即求解M时令m34=1,那么共有11个未知数,取n个目标点n26可得2n个方程,是个超定方程,表示成矩阵形式如下:kLm'=u(12)其中xw10yw10zw10xw1zw1-u1xw1-v1xw1-U1yw1一v1yw1U1zw1一V1Zw1Xwi0ywi0zwi0xwiywizwi-Uixwi-vixwi-Uiywi-viywi-uiz-uizwiwi2n11'.''

17、'''.TM=m11,m12,m13,m14,m21,m22,m23,m24,m3m32,m33v1.qvi.unvnT利用最小二乘法求出上述线性方程组的解为:T1TM'=(KK)KU实际上由等式M'矩阵即可确定物体世界坐标xw,yw,Zw到图像点u,v的映射关系.(2)求解R,T和m34将R和M矩阵分块,其中R代表R矩阵中第i行,Mi代表M矩阵中第i行的前三个元素组成的行向量,即XIR=r2/3Jm141m24m34=m34M-M1'm,4m2'm24.'M31534(13)由矩阵变换M1bM2=M可得:m1m14;41_Mm3

18、4MMm241M2m14m24fxR1U0R3=fyR2+v°R3fxtfyt_M3m34yv0tztz(14)化简结果如下:R2=m34M2-v0M3fyR3-m34M3txm34m14-U0fxtym34m24一Uofxfyfytz=m34''=m341M1M3I''.=m341MlM31综上,带入参数,可得到投影矩阵MM=m34,M',同时可以求得相机成像内外参数.3在靶标图和像图上确定特殊标点及其对应像点线性相机模型成像原理本质是相同的,因此基于小孔成像的原理,靶标中两圆间公切线所在的切点在经过镜头折射后,必然与像中对应的两个形变后的圆

19、的公切线所在切点是对应的,如下列图所示:由左图物图到右图像图,圆的形状虽然有改变,但是公切线所在切点还是对应不变的.对于物平面上的假设干个圆,任取两圆可得四个切点,这样可得假设干个切点及其对像平面上的像点,实际取多少切点可根据图形和解题需要具体确定.由此可确定靶标中切点的世界坐标和对应像中切点像素坐标.4.1.4 求解通过上述模型和算法程序见附录prol得到投影矩阵,也就是确定了原模型中相机成像的内外参数.此时,只要给出物平面的圆心,就可直接求得靶标上圆心在像平面上像坐标.4.2 问题24.2.1 问题分析根据题目给出的条件,首先利用问题1取点方法得到多组靶标点与其对应像点,从而确定靶标点的世

20、界坐标及其像点的像素坐标,再将其带入问题1模型,可以得到相机成像内外参数.最后将图2的圆心的世界坐标带入模型,得到对应像平面上的像坐标.4.2.2 模型的建立(1)选取特殊物点及其对应像点此题中选取的世界坐标系是以物平面的左下角E为原点,EA方向为x轴,EB方向为y轴.利用问题1中公切线取点的方法,结合问题本身,可选取的切点及其像平面对应的像点如下(图中仅给出圆两两外切情况,公切线内切选点也可用):靶标上的取点:像平面上靶标点相对应的像点no具体取点的算法和流程图如下编程见附录program2:Stepl:根据图3靶标的像的每个像素颜色的不同将bmp图转化为0/1编码Step2:运用广度搜索算

21、法扩展节点,建立在一个区域图形的相互关系Step3:运用并查集算法压缩路径,将每个区域图形独立Step4:用一个像点周围四个点来确定该点是否为区域图形的边缘点,如果为边缘点那么存入v数组中Step5:对于任意两个区域,各取一个边缘点,确定一条直线y=k*x-bStep6:将这两个区域上所有的边缘点的横坐标带入直线,检测该直线是否与该区域相切,如果该直线与两个区域都相切,那么这对边缘点为两个区域的一对切点Step7:对求出的切点进行处理,确定任意两个区域的所有切点注:任意两个区域应有两对切点,但由于精度原因,两个区域我们求出多对解.将横纵坐标不超过2个像素的点归为一类点,将这一类点求平均值,抛弃

22、距离平均值点10个像素点,再求剩余点横纵坐标的平均值,取整,确定两个区域的两对切点.读入靶标的像的图片得到如下特殊切点的像点坐标像平面左下角为原点,单位是像素uvuvuvP1326619P7288301P13364580P2425610P8591296P14323266P3645591P9278232P15604554P4312539P10577233P16549253P5416532P11282579P17676559P6636517P12246262P18617270机成像内外参数:3.380.140283.79M=0.162.710264.820.000.0001-3.380.14028

23、3.79M=0.162.710264.824工J.00M107.00父10010.260.040R=-0.010.260-0.10-0.100_20.96T=20.2511.73_注:线性方程组中未知数的数目大于实际自由度的数目,因此,线性方程中的未知数不是相互独立的,在有噪声的情况下,解的线性方程中的未知数也许能很好地符合这一组线性方程,但由此分解得到的参数值未必能与实际情况相符,使得精度受到一定限制.3靶标上圆心在像平面上对应的像坐标利用MATLAB程求解,程序见pro2对于靶标上的圆,通过M矩阵变换求得其在像平面上的对应点的像素坐标为以左下角为坐标原点,单位:像素:ABCDEu320.0

24、7419.69635.88581.32283.79v576.51568.78552262.3264.82问题1要求的坐标系下,A,B,C,D,E的相机坐标为单位:mri:ABCDEx-50.7751-24.420632.7724918.33862-60.373y50.9285748.883644.44444-32.1958-31.5291z417.1958417.1958417.1958417.1958417.19582确定相机内外参数确定特殊点以后,带入问题1中线性相机模型,利用问题1中具体算法可以求得相禾I用MATLA做图,在像平面的圆上标出求得的像点,如下:网6005505口口45040

25、0350300250200200250300360400450500560600660700从图形可以直观的看出,求得的像点在图形(近似看成椭圆)的中央附近,偏差不大,这是符合实际中照相机拍照原理的,由此也表达了模型的合理性和有效性.4.3问题34.3.1 问题分析在前两问中,我们建立的模型主要是从光学成像原理方面,利用坐标系的变换关系来找到靶标上圆的像坐标.实际中,由于物距比相距大得多,一般可以近似的认为,圆在经过透镜成像以后变为椭圆,假设不考虑畸变因素,可以认为椭圆的中央就是原物平面圆的中央.基于这种思路,在本问题中我们首先提取椭圆边缘点,然后采用最小二乘法提取像平面中椭圆,进而求得椭圆中

26、央坐标,即为靶标圆心的像坐标,并基于此解对问题2进行检测.4.3.2 模型建立(1)建立椭圆最小二乘法拟合模型:先对采集的像平面的bm|H像转化为0/1编码,通广度搜索和并查集确定椭圆区域边缘点,跟据边缘点数据进行最小二乘拟合.椭圆的平面方程为【4】:Ax2BxyCy2DxEyF=0BE-2CDXc2根据该方程所确定的椭圆的中央坐标为:4AC-B2BD-2AEyc4AC-B2假设一般形式的椭圆方程如所列,为了防止零解,并将解的任何整数倍都视为对同一椭圆的表述,对参数做一些限制,约束条件设为A=1,显然,直接应用上述方程对边缘检测后的离散点进行最小二乘处理,就可以得到方程中的各系数.也即求目标函

27、数n222f(B,C,D,E,F)='、(Ax:BXiyCy:DXjEyF-0)2i4的最小值来确定各系数.再由极值原理,欲使fA,B,C,D,E值为最小,必有f=f=f?$.,由此可得一个线性方程组151:N寸22£XV、i士N,.13XiVi一Nk2工XiViiVN2、Xy一N“Xy,i1NN寸13%.2“Xiy'XiyNN.2,.“Xiy'、Xiyi1i=1NNN4Vi-2XiVi3Vii1i1i1i1i1N2XiViN2XNzzzXiVii1iWiVNNNz3VizXiViz2Vii1i=1i=1N2ViNNzzXzViN-2Vii=1N"X

28、iVN"Vii=1NCId,FN3£xViiVN,.22XVi.1Nk3工xiVN2“XVi一N2户VJiT1然后应用求解线性方程组的算法如全主元高斯消去法,结合约束条件,用MATLAB编程求解程序见pro3,就可以求得方程系数A,B,C,D,E,F的值,同时求得椭圆圆心.2结果检验及精度和稳定性分析Step1:判断区域图像内的每个像点是否在拟合的椭圆内,像素点坐标为Xo,V.,代入2222Ax+Bxv+Cv+Dx+Ev+F,右Ax.+Brv.+Cv.+Dx.+Ev.+F>0,贝U点x.,v.在拟合的椭圆外,否那么那么在椭圆内.Step2:确定像点在拟合椭圆内的个数M

29、像点个数为N,那么该区域的拟合精度为S=MNStep3:求出所有区域图像的拟合精度,求平均值,即为此最小二次拟合椭圆的精度利用MATLAB®程求解程序见pro4,拟合图像为:拟合度为:椭圆12345精度0.9725P0.90370.98160.97670.9903那么平均椭圆拟合度为:3=0.96496,由此可以看出拟合度较高,拟合效果很好.3利用拟合椭圆对问题2结果的检验由于对相机来说,物距远远大于焦距,圆经小孔成像的投影接近椭圆,我们对成像进行椭圆的最小二乘拟合,以椭圆的中央作为圆心的参考投影点,评价模型结果的精确性以及稳定性.模型2结果的精确性检验根据椭圆拟合的结果,以椭圆左下

30、角为原点,自左向右为x轴,自下向上为y轴建立图像素坐标系,得到椭圆中央的坐标ABCDEU325.4300F424.9500641.0200583.7100287.5200;V586.9800576.0500557.0700266.4000271.7900JUi-u;2Vi-v;2定义平均偏差d二且5那么求得d=8.12像素单位假设以分辨率lx=1024,ly=768作为权重那么误差率d=-=d=.=0.63%Yi2两种方法得到的圆心坐标根本一致,证实模型结果比拟精确.模型2结果的稳定性分析在问题二的模型中,参数是由切点的世界坐标和图像像素坐标决定的考察模型结果的稳定性应考察取不同的切点组求得的

31、圆心坐标的差异在取100组100EC;0不同的切点,每组10个切点:第一组:P1,P2,P3,P4,P5,P6,P7,P8,P9,P10第二组:P1,P2,P3,P4,P5,P6,P7,P8,P9,P11第三组:P1,P2,P3,P4,P5,P6,P7,P8,P9,P12第一组ABCDEu323.07415.69639.88584.32283.79v578.51568.78552.10261.30264.82:第二组ABCDEu317.09417.52635.88580.321286.79v576.52566.30551.98264.30262.81第三组ABCDEu319.09419.526

32、28.88586.321289.791v582.52585.30558.98269.30266.81求得误差率分别为:;=0.6%2=0.72%.=0.63%直方图x?2?.=0.085N=100中的取值在0.48,0.78区间内,变化范围不大,证实模型结果有较强的稳定性.4.3.3对误差原因的探讨误差主要是未考虑畸变因素造成的,引入畸变影响因素,可建立非线性模型对其进行修正,进而得到精度更高的解.主要的畸变误差分为三类:径向畸变、偏心畸变和薄棱镜畸变.第一类只产生径向位置的偏差,后两类那么既产生径向偏差,又产生切向偏差.(1)径向畸变:光学镜头径向曲率的变化是引起径向变形的主要原因.这种变形

33、会引起图像点沿径向移动,离中央点越远,其变形量越大.正的径向变形量会引起点向远离图像中央的方向移动,其比例系数增大;负的径向变形量会引起点向靠近图像中央的方向移动,具比例系数减小.、X=kiXd(X;Yd2)O(Xd,Yd)5、Yr=kiYd(X:Y;)O(Xd,Yd)5(2)偏心畸变:由于装配误差,组成光学系统的多个光学镜头的光轴不可能完全共线,从而引起偏心变形,这种变形是由径向变形分量和切向变形分量共同构成.Xd=P1Xd(3X;Y;)2p2XdYdO(Xd,Yd)4Yd=2.XdYdp2Xd(Xd3Y;)O(Xd,Yd)4(3)薄棱镜变形:薄棱镜变形是指由光学镜头制造误差和成像敏感阵列制

34、造误差引起的图像变形,这种变形是由径向变形分量和切向变形分量共同构成、.Xp=s(X;Yd2)O(Xd,Yd)422_4_-Yp=S2(XdYd)O(Xd,Yd)图像平面理想图像点坐标(Xu,Yu)与实际图像点坐标(Xd,Yd)与畸变误差之和,即:Xu=Xd、Xr、Xd、XpX=YdYrYdYp综上,根据实际情况引入不同畸变因素,用非线性相机模型求解,具体可见模型改进.4.4问题44.4.1 问题分析当两部相机位置固定时确定两部相机的相对位置,就是要确定两部相机间的旋转角度和平移距离.根据其拍摄的图像,利用问题1模型可以分别得到在同一世界坐标系下的物与两部相机的位置关系,然后以物的世界坐标为中

35、间变量,利用旋转矩阵和平移矩阵,对物与相机坐标系进行转换,得到两相机间的相对位置关系.4.4.2 模型建立立体相机模型如图4世界中标系X月期Xttr*P(XWiYw.Zw)双目立体相机系统不同于单相机的一个主要方面是,除了每个相机的内部参数需要标定之外,还要精确确定两个相机之间的相对位置和姿态,称为外部参数标定【6】.如图,设P点在世界坐标系、左镜头坐标系、右镜头坐标系下的坐标分别为xxXrX=y,Xl=|yiI,Xr=yr-zj!zizj故由问题1模型中从世界坐标系到相机坐标系的坐标变换有Xl二RXTXr=RrXTr1其中R,R分别为左右摄像机在世界坐标系下的方向矩阵,标系下的平移矩阵那么由左摄像机坐标变换可得X=RXl-Rl/Tl将该式带入右坐标系,可得Xr=RrR,Xl+Tr-RRT1Tl令Rr二RrR1Tir=Tr-叩一丁(15)(16)Ti,Tr为左右摄像机在世界坐(17)(18),Tk表示从左相机坐标系到右那么用Rr表示从相机左坐标系到右相机坐标系的旋

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论