版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、4-1.3三角函数的诱导公式一、教材分析一教材的地位与作用:1、本节课教学内容“诱导公式二、三、四是人教版数学4,第一章1、3节内容,是学生已学习过的三角函数定义、同角三角函数根本关系式及诱导公式一等知识的延续和拓展,又是推导诱导公式五的理论依据。2、求三角函数值是三角函数中的重要问题之一。诱导公式是求三角函数值的根本方法。诱导公式的重要作用是把求任意角的三角函数值问题转化为求090角的三角函数值问题。诱导公式的推导过程,表达了数学的数形结合和归纳转化思想方法,反映了从特殊到一般的数学归纳思维形式。这对培养学生的创新意识、开展学生的思维能力,掌握数学的思想方法具有重大的意义。二教学重点与难点:
2、1、教学重点:诱导公式的推导及应用。2、教学难点:相关角边的几何对称关系及诱导公式结构特征的认识。二、目标分析根据教学内容的结构特征,依据学生学习的心理规律和新课程标准的要求,结合学生的实际水平,本节课的教学目标为:1、知识目标:1识记诱导公式。2理解和掌握公式的内涵及结构特征,会初步运用诱导公式求三角函数的值,并进行简单三角函数式的化简和证明。2、能力目标:1通过诱导公式的推导,培养学生的观察力、分析归纳能力,领会数学的归纳转化思想方法。2通过诱导公式的推导、分析公式的结构特征,使学生体验和理解从特殊到一般的数学归纳推理思维方式。3通过根底训练题组和能力训练题组的练习,提高学生分析问题和解决
3、问题的实践能力。3、情感目标:1通过诱导公式的推导,培养学生主动探索、勇于发现的科学精神,培养学生的创新意识和创新精神。2通过归纳思维的训练,培养学生踏实细致、严谨科学的学习习惯,渗透从特殊到一般、把未知转化为的辨证唯物主义思想。三、过程分析一创设问题情景,引导学生观察、联想,导入课题I 重现已有相关知识,为学习新知识作铺垫。1、提问:试表达三角函数定义2、提问:试写出诱导公式一3、提问:试说出诱导公式的结构特征4、板书诱导公式一及结构特征:诱导公式一sin(k2+)=sin cos(k2+)=costg(k2+)=tgkZ结构特征:终边相同的角的同一三角函数值相等把求任意角的三角函数值问题转
4、化为求0360角的三角函数值问题。5、问题:试求以下三角函数的值1sin1110 2sin1290学生:1sin1110=sin32+30=sin30=2sin1290=sin32+210=sin210至此,大多数学生无法再运算,从已有知识导出新问题6、引导学生观察演示一,并思考以下问题一:3002100演示一1210能否用180+的形式表达?090210=180+302210角的终边与30的终边关系如何?互为反向延长线或关于原点对称3设210、30角的终边分别交单位圆于点p、p,那么点p与p的位置关系如何?关于原点对称4设点px,y,那么点p怎样表示? px,y5sin210与sin30的值
5、关系如何?7、师生共同分析:在求sin210的过程中,我们把210表示成180+30后,利用210与30角的终边及其与单位圆交点p与p关于原点对称,借助三角函数定义,把180270角的三角函数值转化为求090角的三角函数值。8、导入课题:对于任意角,sin与sin180+的关系如何呢?试说出你的猜测。二运用迁移规律,引导学生联想类比、归纳、推导公式I1、引导学生观察演示二,并思考以下问题二:1800300180018001800设为任意角 演示二1角与180+的终边关系如何?互为反向延长线或关于原点对称2设与180+的终边分别交单位圆于p,p,那么点p与p具有什么关系? 关于原点对称3设点px
6、,y,那么点p坐标怎样表示? px,y4sin与sin180+、cos与cos180+关系如何?5tg与tg180+6经过探索,你能把上述结论归纳成公式吗?其公式特征如何?2、教师针对学生思考中存在的问题,适时点拨、引导,师生共同归纳推导公式。1板书诱导公式二sin180+=sin cos180+=costg180+=tg2结构特征:函数名不变,符号看象限把看作锐角时把求180+的三角函数值转化为求的三角函数值。3、根底训练题组一:求以下各三角函数值可查表cos225 tg sin4、用相同的方法归纳出公式:sin=sincos=costg=tg5、引导学生观察演示三,并思考以下问题三:300
7、300演示三130与30角的终边关系如何? 关于x轴对称2设30与30的终边分别交单位圆于点p、p,那么点p与p的关系如何?3设点px,y,那么点p的坐标怎样表示? p(x,y)4sin30与sin30的值关系如何?6、师生共同分析:在求sin30值的过程中,我们利用30与30角的终边及其与单位圆交点p与p关于原点对称的关系,借助三角函数定义求sin30的值。导入新问题:对于任意角 sin与sin的关系如何呢?试说出你的猜测?1、引导学生观察演示四,并思考以下问题四:O设为任意角 演示四1与角的终边位置关系如何? 关于x轴对称2设与角的终边分别交单位圆于点p、p,那么点p与p位置关系如何?关于
8、x轴对称3设点p(x,y),那么点p的坐标怎样表示? p(x,y)4sin与sin、 cos与cos关系如何?5tg与tg6经过探索,你能把上述结论归纳成公式吗?其公式结构特征如何?2、学生分组讨论,尝试推导公式,教师巡视及时反应、矫正、讲评3、板书诱导公式三sin=sin cos=costg=tg结构特征:函数名不变,符号看象限把看作锐角把求的三角函数值转化为求的三角函数值4、根底训练题组二:求以下各三角函数值可查表 sin tg210 cos24012三构建知识系统、掌握方法、强化能力I、课堂小结:以填空形式让学生自己完成1、诱导公式一、二、三sink2+=sin cosk2+=costg
9、k2+=tg(kZ)sin+=sin cos+=costg+=tgsin()=sin cos()=costg()=tg用相同的方法,归纳出公式Sin()SinCos()cosTen()tan2、公式的结构特征:函数名不变,符号看象限把看作锐角时能力训练题组:检测学生综合运用知识能力1、sin(+)=为第四象限角,求cos(+)+tg()的值。2、求以下各三角函数值1tg( ) 2sin( )3cos(5100151) 4sin()III方法及步骤:00900间角的三角函数任意正角的三角函数任意负角的三角函数查表求值003600间角的三角函数IV作业与课外思考题通过上述两题的探索,你能推导出新的
10、公式吗?四、教法分析根据教学内容的结构特征和学生学习数学的心理规律,本节课彩了“问题、类比、发现、归纳探究式思维训练教学方法。1利用已有知识导出新的问题,创设问题情境,引起学生学习兴趣,激发学生的求知欲,到达以旧拓新的目的。2由1800300与300、300与300终与边对称关系的特殊例子,利多媒体动态演示。学生对“为任意角的认识更具完备性,通过联想、引导学生进行导,问题类比、方法迁移,发现任意角与1800、终边的对称关系,进行寅,从特殊到一般的归纳推理训练,学生的归纳思维更具客观性、严密性和深刻性,培养学生的创新能力。3采用问题设疑,观察演示,步步深入,层层引发,引导联想、类比,进而发现、归纳的探究式思维训练教
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 厦门2024年项目分包合同样本3篇
- 高三上学期语文教学工作总结
- 评审材料真实性保证
- 语文学习利器西红柿与培智的完美融合
- 购货合同与购销合同的合同仲裁
- 购销合同书写技巧与细节讲解指南案例
- 购销合同更动通知
- 贴心维护技术服务合同
- 足浴店加盟合同协议
- 跟着地图去旅行
- 收音机FM指标测试方法3页
- 兽药大鼠传统致畸试验指导原则
- 英格索兰空压机控制器操作说明书
- 苏州商业市场市调简析报告
- 论现代企业人力资源管理中激励机制的应用以腾讯公司为例
- CRRT治疗剂量的计算
- 量子力学公式
- (完整)风景园林概论知识点,推荐文档
- 新苏教版2021-2022四年级科学上册《15生活中的电》教案
- 小学语文课标目标解读PPT学习教案
- 烟草专卖局(公司)员工考核管理办法
评论
0/150
提交评论