版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上全国数学竞赛二次函数试题精选函数部分1、如图, 点A,C都在函数的图象上,点B,D都在轴上,且使得OAB,BCD都是等边三角形,则点D的坐标为 2、如图,点A,B为直线y=x上的两点,过A,B两点分别作y轴的平行线交双曲线(x>0)于C,D两点。若BD=2AC,则的值为_。 第(9)题3、如图,双曲线(x0)与矩形OABC 的边CB, BA分别交于点E,F,且AF=BF,连接EF, 则OEF的面积为 .4、如图,直线l:y=x+1与直线:把平面直角坐标系分成四个部分,点在( )(A)第一部分(B)第二部分(C)第三部分(D)第四部分5、如果正比例函数y = ax
2、(a 0)与反比例函数y =(b 0 )的图象有两个交点,其中一个交点的坐标为(3,2),那么另一个交点的坐标为( )(A)(2,3) (B)(3,2) (C)(2,3) (D)(3,2)6、在平面直角坐标系中,满足不等式x2y22x2y的整数点坐标(x,y)的个数为( ) (A)10 (B)9 &
3、#160; (C)7 (D)57、已知点A,B的坐标分别为(1,0),(2,0) 若二次函数的图象与线段AB恰有一个交点,则的取值范围是 8、如果关于x的方程x2+kx+k23k+= 0的两个实数根分别为,那么的值为 9、二次函数的图象与轴正方向交于A,B两点,与轴正方向交于点C已知,则 10、二次函数的图象的顶点为D,与x轴正方向从左至
4、右依次交于A,B两点,与y轴正方向交于C点,若ABD和OBC均为等腰直角三角形(O为坐标原点),则 RtABC的三个顶点,均在抛物线上,并且斜边AB平行于x轴若斜边上的高为,则( )(A) (B) (C) (D)11、设是的三边长,二次函数在时取最小值则ABC是( )(A)等腰三角形(B)锐角三角形 (C)钝角三角形 (D)直角三角形12、已知二次函数的图象与轴的两个交点的横坐标分别为,且.设满足上述要求的的最大值和最小值分别为,则_13、已知点M,N的坐标分别为(0,1),(0,1),点P是抛物线上的一个动点(1)判断以点P为圆心,PM为半径的圆与直线的位置关系;(2)设直线PM与抛物线的另
5、一个交点为点Q,连接NP,NQ,求证:14、已知抛物线:和抛物线:相交于A,B两点. 点P在抛物线上,且位于点A和点B之间;点Q在抛物线上,也位于点A和点B之间. (1)求线段AB的长;(2)当PQy轴时,求PQ长度的最大值15、在直角坐标系xOy中,一次函数的图象与轴、轴的正半轴分别交于A,B两点,且使得OAB的面积值等于(1) 用b表示k;(2) 求OAB面积的最小值 16、已知,对于满足条件的一切实数,不等式 (1)恒成立.当乘积取最小值时,求的值.17、设为正整数,且二次函数的图像与轴的两个交点间的距离为,二次函数的图像与轴的两个交点间的距离为如果对一切实数恒成立,求的值。18、设是正
6、整数,二次函数反比例函数如果两个函数的图像的交点都是整点(横、纵坐标都是整数的点),求的值19、已知二次函数,当时,恒有;关于x的方程的两个实数根的倒数和小于求的取值范围20、如图,在平面直角坐标系xOy中, AO = 8,AB = AC,sinABC=CD与y轴交于点E,且SCOE = SADE. 已知经过B,C,E三点的图象是一条抛物线,求这条抛物线对应的二次函数的解析式.21、已知为正整数,设,O为坐标原点若,且(1)证明:;(2)求图象经过三点的二次函数的解析式22、已知二次函数的图象与轴的交点分别为A、B,与轴的交点为C.设ABC的外接圆的圆心为点P.(1)证明:P与轴的另一个交点为
7、定点.(2)如果AB恰好为P的直径且,求和的值.23、已知关于的一元二次方程的两个整数根恰好比方程的两个根都大1,求的值. 已知二次函数的图象经过两点P,Q.(1)如果都是整数,且,求的值.(2)设二次函数的图象与轴的交点为A、B,与轴的交点为C.如果关于的方程的两个根都是整数,求ABC的面积.24、如图,点为轴正半轴上一点,两点关于轴对称,过点任作直线交抛物线于,两点.()求证:=;()若点的坐标为(0,1),且=60º,试求所有满足条件的直线的函数解析式.25、已知抛物线与动直线有公共点,且. (1)求实数t的取值范围; (2)当t为何值时,c取到最小值,并求出c的最小值.26、如图,抛物线(a0)与双曲线相交于点A,B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论