ENVI实习-高光谱遥感_第1页
ENVI实习-高光谱遥感_第2页
ENVI实习-高光谱遥感_第3页
ENVI实习-高光谱遥感_第4页
ENVI实习-高光谱遥感_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、高光谱遥感第三次实习一、 实习任务: 运用MNF变换后的波段以及散点图工具提取端元 运用MNF变换后的波段以及纯洁像元指数工具以及N维可视化仪提取端元 运用提取的端元进行分类和制图二、 实习目标以及用时:学习运用ENVI软件进行纯洁像元的提取方法三、 教学方式:依据实习指导书进行实验,并完成实习报告四、 使用器材:美国内华达的赤铜矿AVIRIS遥感数据,该数据已经经过ATREM大气校正,ENVI遥感软件 五、 具体实习过程本次实习主要内容:本章选用的实验数据是一幅经过校准的AVIRIS图像,处理的结果用于地质学应用,这主要是考虑到,到目前为止地质学研究仍然是高光谱遥感的主要应用领域之一。 在E

2、NVI主菜单下选择:File > Open Image File,在翻开的文件选择窗口中选择图像文件cup95eff,点击OK翻开图像: 这是一幅经过校准的有50个波段的AVIRIS图像,图中显示的是将第183、193、207波段分别赋红、绿、蓝合成的彩色图像。 我们可以翻开它的2-D散点图观察一下。在主图像窗口中选择:Tools > 2-D Scatter Plots,在随即弹出的波段选择窗口中任意选择两个波段,点击OK构成2-D散点图。这里选择的是第172、173波段。 在这幅2-D三点图上我们可以观察到,在由172和173波段组成的光谱特征空间中图像上的点明显地呈线状点云分布

3、,说明这两个波段的相关性极强。 遥感图像的某些波段之间往往存在着很高的相关性,直观上波段图像彼此很相似,从提取有用信息的角度考虑,有相当一局部数据是多余和重复的,解决这一问题的有效方法是进行特征提取和特征选择,去相关和别离噪声。 在多光谱遥感图像处理中,我们会采取PC旋转,但是相比之下,MNF变化更适用于高光谱遥感数据。下面我们就用MNF变换对图像进行处理。 最低噪声分数MNF变换用以确定图像数据的内在维度、隔离噪声以及降低后处理的计算要求。MNF变换的本质就是两个叠置的主成分变换。第一次变换基于估计的噪声协方差矩阵用于别离和重新调节数据中的噪声。第一步导致了转换数据的噪声个体的变异和波段与波

4、段的不相关。第二步是标准主成分变换。 在ENVI主菜单下选择:Transform > MNF Rotation > Forward MNF > Estimate Noise Statistics from Data。变换完成后得到如下MNF特征值曲线,其横坐标为变换后的波段数之所以只有25个波段是因为我在之前的MNF参数设置中更改了输出波段数,纵坐标为特征值。 把鼠标移到曲线上并点击左键,曲线上会出现一条以点击位置为交叉点的十字,同时在窗口左下角显示当前的波段数和其特征值。特征值越高说明信息量越丰富另外,我们还可以利用2-D散点图检查去相关的情况。 以同样的方法翻开2-D散点

5、图,但需要注意的是我们要用MNF图像的第1、2波段,也就是信息最集中的两个波段构成散点图: 可见,经过MNF变换后的图像波段之间的相关性有效地降低了,并且出现了多个拐点,这些拐点就是我们要找的端元Endmembers。 在翻开的散点图上点击鼠标中键会出现一个红色的小方块,在主图像窗口中对应这个小方块区域中的点同时呈现红色;在主图像窗口中点击鼠标左键,在散点图上对应点击位置的像素同时呈现红色。这一功能方便我们观察图上像素点与散点图上的像素点的相互对应位置。 端元对应图像上的“纯像元,是否能很好地提取它对于我们的分类是十分重要的。下面的操作就是利用MNF处理后图像2-D散点图选择端元生成样本区用以

6、分类的过程。 在翻开的2-D散点图上利用ROI制图功能将点云拐角零散的几个点圈起来,并且不同的ROI用不同的颜色表示。同时在图上这些ROIs也显示了出来。在散点图窗口中选择:Options > Export All 将选择的区域输出为ENVI的ROIs,显示如下窗口: 在此为了便于区分,我用Edit将每个样本区更名为其颜色的名称。 选好了样本区后还要对样本区中的点进行训练。我接下来要进行的操作就是要通过链接2-D散点图和Z-剖面图观察样本区中点的光谱特征曲线,删除差异显著的点,到达训练样本区的目的。 在2-D散点图窗口中选择Options > Z-Profile ,在文件列表中选择

7、反射数据CUP95EFF.INT,随即显示一个空白波段图。在2-D散点图窗口中点击鼠标右键,在空白的2-D散点图窗口中就会出现当前的像素剖面图及其坐标值,将差异显著的点删去用白色画样本区即可删除。 训练完成后,在2-D散点图窗口中选择:Options > Mean All 提取各样本区的平均波谱曲线我们现在已经得到了七类地物,但还没有确定它们的种类。在此,我们可以运用ENVI的波谱分析功能来解决。波谱分析首先需要翻开一个波谱库,然后将未知波谱与波谱库中的波谱进行匹配处理,并得出一系列匹配系数,系数越大就说明与这种地物越匹配。下面就进行具体的说明。 在ENVI主菜单下选择:Spectral

8、 > Spectral Analyst,在弹出的窗口中选择波谱库,在此我们选择USGS美国地质调查局波谱库,点击OK,在弹出的“Edit Identify Methods Weighting窗口中设定计算参数后点击OK,随即弹出波谱分析窗口,点击Apply,在弹出的输入波段列表中选择我们要鉴别的波谱。 选择一个待鉴别的波谱后波谱分析窗口中就会显示这一波谱与波谱库中的波谱匹配分析的结果,如下列图: 从结果来看,这一类显著匹配明矾石,所以我们根本上可以将这类定为“明矾石。 双击列表中的第一个波段名称绘制未知波段,波谱库波谱也会同时显示以作比拟: 依此方法将其余的几类逐一进行分析,确定其特征,

9、并更改类别名称。通过分析我们发现最后两类显示了极其相似的特征,即中长石特征,于是我把这两类合并。在ROIs Tools窗口中选择Option > Merge Regions。弹出如下窗口,选择基准类及合并类后点击OK即完成合并。在保存了新的样本区文件后,就可以利用适当的监督分类方法进行分类了。 以上介绍的是通过2-D散点图定义样本区的方法,对于高光谱遥感来说由于其数据特点,考虑到运用n-D散点图分析效果可能会更好。此外在得到MNF处理图像以后通常还用到其它一些处理方法,下面就一一介绍。 像素纯度指数(PPI)是一种在多光谱和高光谱图像中寻找波谱最纯的像元的方法。 波谱最纯像元与混合的端元

10、相对应。像素纯度指数通过迭代将N-D散点图影射为一个随机单位向量。每次影射的极值像元被记录下来,并且每个像元被标记为极值的总次数也记下来。一幅“像素纯度图像被建立,在这幅图像上,每个像素的 DN 值与像元被标记为极值的次数相对应。 下列图概括ENVI中PPI的使用过程: 在ENVI主菜单下选择:Pixel Purity Index > FASTNew Output Band,选择前面得到的MNF图像进行PPI处理。经过10000次迭代后得到的PPI图像如下所示: 越亮的像素说明它被标记为极值的次数越多相应地也越纯;相反,暗一些的图像纯度就低。在主图像窗口中选择:Enhance >

11、Interactive Stretching 尝试不同的交互式拉伸以理解PPI图像的直方图和数据分类。 上图显示的是一个输入和一个输出直方图的比拟窗口,在图中显示了当前的输入数据和各自拉伸的结果。两条垂直的星布线标志着当前拉伸的最小值和最大值。在窗口的底部列出了拉伸类型和直方图的来源。拖拽星布线的最大值和最小值,然后点击“Apply,拉伸将自动执行。 这幅PPI图像是前面的MNF图像经过一万次迭代得到的结果,图像上像素点的值说明了它在迭代过程中有多少次作为极值像元被记录下来。这些数值显示了每个像素周围的数据云的局部突面程度以及每个像素和数据的突起外壳的亲近程度。简言之,值越高越接近n-D散点图

12、的数据源拐角,拥有这些值的数据,其纯度比值低的像素高。零值像素是从未被作为极值的像素。 下面要执行的操作是由PPI图像生成样本区。 在ROIs Tool对话框中选择Options > Band Threshold to ROI 建立一个只包含拥有高PPI值像素的ROI。选择输入的PPI文件,在弹出的对话框中输入最小极限值: 点击“OK,即生成包含在迭代过程中100次以上作为极值的最纯像素的ROI。从下列图中可以看出有2989个符合条件的点被提取出来,生成了红色的样本区。 生成的ROI包含最纯像素的位置,但却没有区分它们相应的端元。N维空间观察仪可以帮我们解决这个问题。 波谱可以被认为是n

13、-D散点图中的点其中n是波段数。n-D空间中的点坐标由n个值组成,它们只是一个给定像元的每个波段中波谱辐射或反射值。这些点在n-D空间中的分布可以用来估计波谱的端元数以及它们的纯波谱信号数。N维观察仪为N维空间中选择端元提供了一个交互式工具。n-D观察仪用于连接最小噪声分数转换(MNF)和要定位、识别的纯洁像元指数,并收集数据集中最纯的像元和极值波谱反响。 n-D观察仪允许数据在N维空间中交互式旋转,选择像元组进行分类,以及聚集类,使其它类的选择更容易。选择的类可以输出到ROIs,并用作分类、不混溶和匹配的滤波技术的输入。 在ENVI主菜单中选择Spectral > n-Dimensio

14、nal Visualizer > Visualize with New Data,在弹出的对话框中选择前面处理好的MNF文件,选择其前十个波段进行观察。这里默认使用刚刚生成的只拥有高PPI值的ROI。如果有多个可选择的ROIs,它会让你选择用哪一个。点击ROI后将弹出可以选择1到10波段的N维控制对话框和N维散点图窗口。 选择前五个波段构成n-D散点图。并选择n-D控制对话框中的Options > Show Axes选项。随后在n-D控制窗口中点击Start进行旋转: 这是一个N维空间散点图的任意位置的动态显示功能,在这个模型中,小于输入波段数的任意多的波段都能同时被检查。在这一过

15、程中我们可以切实感受到N维数据在空间中的分布,可以确定数据真的是高维的,可见对于处理高光谱图像数据二维散点图是无法满足要求的。 运用N维观察器进行动态旋转观察,当出现感兴趣的位置时停止旋转,选择一种颜色将点云的拐角处圈起来作为一个ROI,点击鼠标左键对ROI进行定义,点击右键完成ROI的建立。继续旋转,根据需要对类进行修改。 以下的关于定义样本区、训练样本区、波谱分析法确定地物类别测试波谱和波谱库中的波谱进行比拟等操作均与前面介绍的用2-D散点图生成样本区的一系列操作类似,在此就不一一赘述了。下面只给出操作结果。 通过n-D散点图定义样本区并输出: 运用Z-剖面图进行样本区的训练,之后输出样本

16、区: 利用波谱分析工具确定地物类别: 在n-D控制窗口中选择Options > Class Controls 弹出n-D分类控制窗口,在窗口中可以任意改变每一类的颜色,开启或关闭类,以及对类值片断的控制。 点击窗口中的颜色块可以激活此类,并可对此类的显示符号进行修改,同时可以对其进行计算统计图表、平均波谱、划分类、去除或输出操作。 接下来我们要根据样本区进行分类。在此我采用光谱角度制图法SAM。 在ENVI主菜单下选择:Classification > Supervised > Spectral Angle Mapper。选择原始图像作为待分类图像。点击OK后弹出端元收集窗口

17、,在此窗口中选择:Import > form ROI from Input File,选择我们刚刚定义好的样本区,点击OK,这些样本区就出现在端元收集器中了,我们就会根据这些样本区对图像进行分类。 点击Apply,在弹出的SAM参数设定窗口中设定参数,点击OK即生成分类后图像: ENVI的分类后处理包括类别合并、面积滤波、类别统计、集群分析、分类叠合、混淆矩阵等。 在ENVI主菜单下选择:Classification > Post Classification > Confusion Matrix,这里有两个选择,一是利用地面真实图像,一是利用地面真实样本区。我选择用地面真实

18、样本区。输入待分析的分类图像运用SAM方法得到的分类图像,出现如下参数输入窗口,可以看见分类图上的样本已经与地面真实样本一一对应。 点击OK。得到如下混淆矩阵: 分类平滑技术采用邻区处理法,平滑窗口可以是3×3或5×5的,但它不是代数运算而是逻辑运算。这种运算方法叫做“多数平滑,它的原理是:一个移动的窗口通过分类后的数据集,并且确定这个窗口中的占优势的类别,即窗口中像元所占类别数最多的那一类,如果这个窗口中的中心像元的类别不属于该窗口的优势类别,就将该像元的类别变换成优势类别,如果在窗口中没有优势类别那么中心像元的类别不发生变化,当窗口在数据集中前进时,原始的类别代码被连续使用而不是使用在前一个窗口位置中被修改后的代码值。 在ENVI主菜单下选择:Classification > Post Classification > Clump Classes。适当设定参数这里采用3×3的模板: 点击OK生成平滑后的图像我们最终得到了这个平滑后的分类图像,从图上我们可以大致判断出不同矿物质的分布情况,事实证明,高光谱的特性使得它目前应用最为广泛的领域就是在地质上的应用,主要是利用矿物的光谱吸收特征参数包括吸收波段波长位置、深度、宽

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论