浙江省杭州市余杭区仁和中学2014-2015学年九年级上学期期末数学试卷【解析】_第1页
浙江省杭州市余杭区仁和中学2014-2015学年九年级上学期期末数学试卷【解析】_第2页
浙江省杭州市余杭区仁和中学2014-2015学年九年级上学期期末数学试卷【解析】_第3页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2021学年省市余杭区仁和中学九年级上期末数学试卷、选择题每题 3分,共24 分1 假设方程X. _ .av 0, b0, cv 0,那么抛物线 y=ax+bx+c的大致图象为( - 3x-仁0的两根为XI、X2,那么的值为K1XZ22二次函数y= (x- 1) +2的最小值是()A - 2 B 2 C - 1 D 12 一_3. 关于x的一元二次方程m- 1 x - 2mx+m=0有两个实数根,那么 m的取值围是A m0 B m 0 C . m0 且 m 1 D . m 0,且 m 14. 如图,不是中心对称图形的是-B, G C5. 如图,点 A C B在O O上,/ AOB2

2、ACB=a贝U a的值为A . 135 B .120 C. 110 D. 100弦AB=8 M是弦AB上的动点,那么OM不可能为6.如图,O O的半径为5,7如图,假设&两圆半径为 5cm和3cm,圆心距为3cm,那么两圆的位置关系是A .相交B . 含C . 切D . 外切、填空题每题 3分,共18 分9.点P 2,- 3关于原点的对称点 P的坐标为.PA=8,那么弦AB的长是.11在半径为的圆中,60的圆心角所对的弧长等于.12在一个不透明的盒子中装有2个白球,n个黄球,它们除颜色不同外,其余均相同假设9从中随机摸出一个球,它是白球的概率为一,那么n=.523213.关于x的方程m - 1

3、 x+ m- 1 x+2x+6=0,当m=寸为一元二次方程.14将抛物线y=2x2向下平移1个单位,得到的抛物线是三、解答题共58分15. 解方程.x2-二二+2=017. 如图,在 ABC中,/ C=90, AD是/ BAC的平分线,0是AB上一点,以 0A为半径的 O 0经过点D.(1) 求证:BC是O 0切线;(2 )假设 BD=5 DC=3 求 AC的长.18. 某市场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元.为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当降价措施经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件求:(1 )假设商场平均每天要赢利1200

4、元,每件衬衫应降价多少元?(2) 要使商场平均每天赢利最多,请你帮助设计方案.19. 如图是一个半圆形桥洞截面示意图,圆心为0直径AB是河底线,弦 CD是水位线,CD/ AB,且AB=26m 0EL CD于点E.水位正常时测得 OE CD=5 24(1 )求CD的长;(2)现汛期来临,水面要以每小时4m的速度上升,那么经过多长时间桥洞会刚刚被灌满?220. 二次函数 y=x+bx+c的图象如下列图,它与 x轴的一个交点的坐标为(-1, 0),与y 轴的交点坐标为(0,- 3).(1)求此二次函数的解析式;(2)求此二次函数的图象与 x轴的另一个交点的坐标;21. 在边长为1的方格纸中建立直角坐

5、标系 xoy , 0 A、B三点均为格点.(1) 直接写出线段OB的长;(2) 将厶OAB绕点O沿逆时针方向旋转 90。得到 OA B.请你画出厶 OA B,并求在旋转过程中,点 B所经过的路径的长度.LFI-1111JJ1111i14-4J11ITTijiii-八丄1111Vliili1liL4iiiiii1111|1iii a ii11 11* f卄戶厂十!1111ii!/! 0! ! ! : ! 22. 在一个不透明的口袋中有四个手感完全一致的小球,四个小球上分别标有数字- 4,- 1,2, 5(1) 从口袋中随机摸出一个小球,其上标明的数是奇数的概率是多少?(2) 从口袋中随机摸出一个

6、小球不放回,再从中摸出第二个小球 请用表格或树状图表示先后摸出的两个小球所标数字组成的可能结果? 求依次摸出的两个小球所标数字为横坐标,纵坐标的点位于第四象限的概率有多大?23. 某农场要建一个长方形 ABCD的养鸡场,鸡场的一边靠墙,(墙长25m)另外三边用木栏围成,木栏长40m.2(1 )假设养鸡场面积为168m,求鸡场垂直于墙的一边 AB的长.(2) 请问应怎样围才能使养鸡场面积最大?最大的面积是多少?2(3) 养鸡场面积能到达 205m吗?如果能,请给出设计方案,如果不能,请说明理由.is/AD占C24. 如图,对称轴为直线 x=的抛物线经过点 A (6, 0)和B ( 0, 4).(

7、1 )求抛物线解析式与顶点坐标;(2)设点E (x, y)是抛物线上一动点,且位于第四象限,四边形OEAF是以0A为对角线的平行四边形,求平行四边形 OEAF的面积S与x之间的函数关系式,并写出自变量 x的取 值围; 当平行四边形OEAF的面积为24时,请判断平行四边形 OEAF是否为菱形? 是否存在点E,使平行四边形 OEAF为正方形?假设存在,求出点E的坐标;假设不存在,请说明理由.2021-2021学年省市余杭区仁和中学九年级上期末数学试卷参考答案与试题解析、选择题每题 3分,共24 分1 .假设方程x2 - 3x-仁0的两根为XI、X2,X 1 + K n那么的值为(k1x2: D .

8、考点:根与系数的关系.分析:由方程X2 3x 1=0的两根为X1、X2,根据一兀二次方程根与系数的关系,即可求/ X1+X2=3, X1X2=- 1,得Xi+X2=3, Xi+X2=- 1,再把它代入要求的式子即可得出答案.解答:2 _ _ 、解:方程x - 3x -仁0的两根为X1、X2,应选B.点评:此题考查了一元二次方程根与系数的关系,解题的关键是掌握:假设二次项系数为1,2常用以下关系:X1, X2是方程x+px+q=0的两根时,X1+X2=- p, X1X2=q性质的应用.2.二次函数 y x- 1 2+2的最小值是A.- 2 B . 2 C .- 1 D .1考点:二次函数的最值.

9、2分析: 考查对二次函数顶点式的理解抛物线y= x - 1 +2开口向上,有最小值,顶点坐标为1,2,顶点的纵坐标2即为函数的最小值.解答: 解:根据二次函数的性质,当x=1时,二次函数y= x - 1 2+2的最小值是2.应选:B.点评: 求二次函数的最大小值有三种方法,第一种可由图象直接得出,第二种是配方 法,第三种是公式法.23.关于x的一元二次方程m- 1 x - 2mx+m=0有两个实数根,那么 m的取值围是A . m0 B . m 0 C . m0 且 m 1 D . m 0,且 m 1考点:根的判别式;一元二次方程的定义.2分析: 令厶=b - 4ac 0,且二次项系数不为 0,

10、即可求得 m的围.解答:解:由题意得:4m- 4 m- 1 m0; m- 1丰0,解得:m 0,且m 1, 应选D.点评: 一元二次方程有实数根应注意两种情况:0,二次项的系数不为 0.4.如图,不是中心对称图形的是)D .考点:中心对称图形.分析: 根据中心对称图形的概念即可求解.解答:解:根据中心对称图形的概念:在同一平面,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,可知A、B、C是中心对称图形;D不是中心对称图形.应选D.点评: 掌握中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.如图,点 A C B在O O上,/ AOB2 ACB

11、=a贝U a的值为A . 135 B .120 C. 110 D. 100考点:圆周角定理.分析:先运用“在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半,再运用周角360即可解.解答:解:/ ACB=a优弧所对的圆心角为 2a 2a+a=360 a=120 .应选B.点评:此题利用了圆接四边形的性质和圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.5弦AB=8 M是弦AB上的动点,贝U 0M不可能为考点:垂径定理;勾股定理.专题:压轴题;动点型.分析:0M最长边应是半径长,根据垂线段最短,可得弦心距最短,分别求出后即可判断.解答:解:M与A或B重

12、合时0M最长,等于半径5;半径为5,弦AB=8/ OMA=90 , 0A=5 AM=4 0M最.短为.1lJ;=3, 3w OMC 5, 因此OM不可能为2.应选A.0M最长应是半径长,最短应是点0到AB的距离长然后点评:解决此题的关键是:知道 根据围来确定不可能的值.7.如图,假设 av 0, b0,B .A .2 . .cv 0,那么抛物线y=ax +bx+c的大致图象为考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a的符号,由抛物线与 y轴的交点判断c的符号,然后根据对称轴与抛物线与 x轴交点情况进行推理,进而对所得结论进行判断.解答:解: av 0,抛物线的开口方向向下,

13、故第三个选项错误;/ c v 0,抛物线与y轴的交点为在y轴的负半轴上,故第一个选项错误;/ a v 0、b 0,对称轴为对称轴在y轴右侧, 故第四个选项错误.应选B.2点评: 考查二次函数y=ax+bx+c系数符号确实定.&两圆半径为 5cm和3cm,圆心距为3cm,那么两圆的位置关系是()A .相交B . 含C . 切D . 外切考点:圆与圆的位置关系.分析:两圆半径为 5cm和3cm,圆心距为3cm,根据圆心距大于半径之差小于半径之和 进行作答.解答: 解:两圆的半径分别是3cm和5cm,圆心距为3cm,5- 3=2, 3+5=8, 2 v 3 v 8,两圆相交.应选A.点评:此题考查了

14、两圆的位置关系与数量之间的联系解题的关键是熟知两圆的圆心距与 两圆的半径之间的关系.二、填空题(每题 3分,共18分)9.点P (2,- 3)关于原点的对称点 P的坐标为(-2, 3).考点:关于原点对称的点的坐标.专题:常规题型.分析:由关于原点对称的点,横坐标与纵坐标都互为相反数,即可求出答案.解答:解:因为关于原点对称的点,横坐标与纵坐标都互为相反数,所以:点(2, - 3)关于原点的对称点的坐标为(-2, 3).故答案为:(-2, 3).点评: 考查了关于原点对称的点的坐标,解决此题的关键是掌握好对称点的坐标规律:(1) 关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2) 关于y轴

15、对称的点,纵坐标相同,横坐标互为相反数;(3) 关于原点对称的点,横坐标与纵坐标都互为相反数.考点:切线的性质;等边三角形的判定与性质.分析:由PA, PB分别切O O于点A B,根据切线长定理,即可求得PA=PB又由/ P=60,即可证得厶PAB是等边三角形,由 PA=8那么可求得弦 AB的长.解答:解:T PA PB分别切O O于点A B, PA=PB/ P=60, PAB是等边三角形, AB=PA=PB/ PA=8, AB=8.故答案为:&点评: 此题考查了切线长定理与等边三角形的判定与性质此题比拟简单,解题的关键是 注意熟记切线长定理,注意数形结合思想的应用.11在半径为二的圆中,60

16、的圆心角所对的弧长等于 2IT考点:分析:解答:弧长的计算.弧长公式为1=解:=2,需,把半径和圆心角代入公式计算就可以求出弧长.故答案为:2.点评: 此题主要考查了弧长计算,关键是掌握弧长计算公式.12在一个不透明的盒子中装有2个白球,n个黄球,它们除颜色不同外,其余均相同假设从中随机摸出一个球,它是白球的概率为一,那么n= 3 .5|考点:概率公式.专题:计算题.2 |2分析: 先求出这个不透明的盒子中装有2+n个球,根据概率公式列出算式=_,从而求2+n |5出答案.解答: 解:这个不透明的盒子中装有 2+n个球,又从中随机摸出一个球,它是白球的概率为卡,.2 =2解得n=3 ,故答案为

17、3.点评: 此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件 A的概率P( A)=匚.13. 关于x的方程(m - 1) x3+ (m- 1) x2+2x+6=0,当m=- 1 时为一元二次方程.考点:一元二次方程的定义.分析:根据一元二次方程的定义列出方程和不等式求解即可.解答: 解:关于x的方程(m - 1) X3+ ( m- 1) x2+2x+6=0,为一元二次方程,.F -1=0严-1产0解得:m=- 1.点评: 此题考查一元二次方程的定义.判断一个方程是否是一元二次方程必须具备以下3个条件:(1) 是整式方程,(2) 只含有一个未

18、知数,(3) 方程中未知数的最高次数是2.这三个条件缺一不可,尤其要注意二次项系数m- 1丰0这个最容易被忽略的条件.14. 将抛物线y=2x2向下平移1个单位,得到的抛物线是2y=2x - 1.考点:二次函数图象与几何变换.专题:数形结合.分析:由于抛物线向下平移 1个单位,那么X=X , y=y - 1,代入原抛物线方程即可得平移 后的方程.解答:解:由题意得:代入原抛物线方程得:y+1=2x 2,2即 y=2x - 1.故答案为y=2x2 - 1.点评:此题考查了二次函数图象的几何变换,重点是找出平移变换的关系.三、解答题(共58分)15. 解方程.x2- +2=0考点:解一兀二次方程-

19、公式法.专题:计算题.分析:把a=1, b=- 2二.,c=2代入求根公式计算即可.解答:解:T a=1, b= - 2寸匕 c=2 ,.b2- 4ac= - 2乜 2 2 - 4 x 1X 2=0,x= 1= ,2X12二 Xl=X2=Jf.点评:此题考查了一元二次方程ax2+bx+c=0 (0, a, b, c为常数)的求根公式:-b 土 - Qg2a2(b - 4ac 0).16. 如图,是某几何体的平面展开图,求图中小圆的半径.考点:弧长的计算.分析: 可观察此图是一个圆锥的展开面,那么利用小圆周长是弧长,列出方程求解即可. 解答: 解:这个几何体是圆锥,假设图中小圆的半径为r,扇形弧

20、长等于小圆的周长,即 1=吃=2? n ? r ,360.1 S-点评:此题的关键是理解底面积的周长是弧长,然后列方程求解.17. 如图,在 ABC中,/ C=90, AD是/ BAC的平分线,O是AB上一点,以 OA为半径的 O O经过点D.(1) 求证:BC是O O切线;(2 )假设 BD=5 DC=3 求 AC的长.考点:切线的判定.专题:几何综合题.分析:(1)要证BC是O O的切线,只要连接 OD再证ODL BC即可.(2)过点D作DEL AB根据角平分线的性质可知 CD=DE=3由勾股定理得到 BE的长,再通 过证明 BDEA BAC根据相似三角形的性质得出AC的长.解答:(1)证

21、明:连接OD AD是/ BAC的平分线,/ 仁/3. 1 分/ OA=OD/ 仁/2./ 2=7 3.|0D/ AC 2 分7 ODB7 ACB=90 . ODL BC. BC是OO切线.3分2 解:过点D作DEL AB,/ AD是7 BAC的平分线, CD=DE=3在 Rt BDE中 ,7 BED=90 ,由勾股定理得:BE二Jb_ DE 2二寸百2 _ 3三二4, 4分来源:21世纪教育网7 BED玄 ACB=90 , 7 B=7 B, BD0A BAC 5 分.BE DE BCAC.J : AC=6. 6 分nA/cff5 C点评: 此题综合性较强,既考查了切线的判定,要证某线是圆的切线

22、,此线过圆上某 点,连接圆心与这点(即为半径),再证垂直即可.同时考查了角平分线的性质,勾股定理 得到BE的长,与相似三角形的性质.18 .某市场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元.为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.求:(1 )假设商场平均每天要赢利1200元,每件衬衫应降价多少元?(2) 要使商场平均每天赢利最多,请你帮助设计方案.考点:二次函数的应用.专题:方案型.分析:(1)总利润-每件利润X销售量.设每天利润为w兀,每件衬衫应降价 x兀,据题意可得利润表达式,再求当w=120

23、0时x的值;(2 )根据函数关系式,运用函数的性质求最值.解答:解:设每天利润为 w兀,每件衬衫降价 x兀,2 2根据题意得 w= ( 40 - x) (20+2x) =- 2x+60x+800= - 2 (x - 15) +12502(1 )当 w=1200时,-2x +60x+800=1200 , 解之得 xi=10, X2=20.根据题意要尽快减少库存,所以应降价20元.答:每件衬衫应降价 20元.(2)解:商场每天盈利(40-x) (20+2x)=-2 (x- 15) 2+1250.当x=15元时,商场盈利最多,共1250元.答:每件衬衫降价15元时,商场平均每天盈利最多.点评: 此题

24、重在考查根据题意写出利润的表达式是此题的关键.19. 如图是一个半圆形桥洞截面示意图,圆心为O,直径AB是河底线,弦 CD是水位线,CD/ AB,且AB=26m OEL CD于点E.水位正常时测得 OE CD=5 24(1 )求CD的长;(2)现汛期来临,水面要以每小时4m的速度上升,那么经过多长时间桥洞会刚刚被灌满?考点:垂径定理的应用;勾股定理.分析: (1)在直角三角形 EOD中利用勾股定理求得 ED的长,2ED等于弦CD的长;(2)延长OE交圆O于点F求得EF=O- OE=13- 5=8m然后利用缶2 (小日寸),所以经过2小时桥洞会刚刚被灌满.解答: 解:(1)t直径 AB=26mO

25、D上一、一:匸,/ OEL CD/ OE CD=5 24, OE: ED=5 12,设 OE=5x ED=12x在 Rt ODE中( 5x) + (12x) =13 ,解得x=1 , CD=2DE=Z 12X 1= 24m2 由1得 0E=1X 5=5m延长OE交圆0于点F, EF=OF- OE=13- 5=8m点评: 此题主要考查了垂径定理的应用以与勾股定理等知识,出空白面积来解决.求阴影局部面积经常运用求220. 二次函数 y=x+bx+c的图象如下列图,它与 x轴的一个交点的坐标为-1, 0,与y 轴的交点坐标为0,- 3.1求此二次函数的解析式;2 求此二次函数的图象与 x轴的另一个交

26、点的坐标;3根据图象答复:当 x取何值时,y v 0?考点:抛物线与x轴的交点.专题:代数综合题.2分析: 1将-1, 0和0,- 3两点代入二次函数 y=x +bx+c,求得b和c;从而 得出抛物线的解析式;2 令y=0,解得X1, X2,得出此二次函数的图象与x轴的另一个交点的坐标;3由图象得当-1v xv 3时,yv 0.2解答: 解:1由二次函数y=x +bx+c的图象经过-1, 0和0,- 3两点,fl - bfc=0得1分b= - 2解这个方程组,得2分匕二-3.抛物线的解析式为 y=x2- 2x - 3. 3 分2(2)令 y=0,得 x - 2x - 3=0.解这个方程,得 x

27、i=3, X2=- 1 .此二次函数的图象与 x轴的另一个交点的坐标为(3, 0) . (5分)x轴的交点问题以与用待定系数法求二次函(3)当-1v x v 3 时,y v 0. (6 分) 点评: 此题是一道综合题,考查了二次函数与 数的解析式.21. 在边长为1的方格纸中建立直角坐标系 xoy , 0、A、B三点均为格点.(1) 直接写出线段0B的长;(2) 将厶OAB绕点0沿逆时针方向旋转 90。得到 OA B.请你画出厶OA B,并求在旋转过程中,点 B所经过的路径二二的长度.90兀 *33HISO _ 2(2)图形如右图.Lrr1111L一D 1111i1- iir- r-i11ft

28、I|i_111111I1111i i i1 V 1 严t 1 1 1 i i i;1J1*11J J- 11i:1ii;iiiriiiiiIii1 0B r考点:作图-旋转变换;弧长的计算.专题:计算题;网格型.分析:在网格里,将 OAB绕点0按逆时针方向旋转 90,需要充分运用网格,坐标轴的垂直关系画图,计算弧长,要明确这段弧的圆心0半径OB解答:解:(1) OB=390 或 180,要充分运用已有的垂直关系画图.22. 在一个不透明的口袋中有四个手感完全一致的小球,四个小球上分别标有数字- 4,- 1,2, 5(1) 从口袋中随机摸出一个小球,其上标明的数是奇数的概率是多少?(2) 从口袋

29、中随机摸出一个小球不放回,再从中摸出第二个小球 请用表格或树状图表示先后摸出的两个小球所标数字组成的可能结果? 求依次摸出的两个小球所标数字为横坐标,纵坐标的点位于第四象限的概率有多大? 考点:列表法与树状图法;概率公式.分析:(1)利用古典概率的求解方法即可求得答案,用到的知识点为:概率=所求情况数与总情况数之比;(2)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求 出该事件的概率即可.解答: 解:(1)从口袋中随机摸出一个小球,其上标明是奇数的概率是p4=0.5 ;(2 用表格表示摸出的两个小球所标数字所有可能出现的结果如下所示: 第一次摸出小球的数字 第二次摸出小球后所构成的坐标组合-4(- 4,1) (- 4, 2) (- 4, 5)-1(- 1,- 4)(-1 , 2)(- 1, 5)2( 2,- 4)(2, - 1)(2, 5)5( 5,- 4)( 5, - 1)(5, 2)位于第四象限的点有(2, - 4)、(2, - 1)、(5, - 4)、( 5, - 1)这四个, q Hl 依次摸出两个小球所标数字为横、纵坐标的点位于第四象限的概率有P七.Iz S点评: 此题考查的是用列

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论