版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、n1a1 n2a2 n 3a3h i 2 V0 V(r)= H?0 #' 2mh22m2屮0(r) Vo,o)(r)二E(0)(k)? (0)(r)宇 r(0)(r ) kr reikr,E(0)(k)h2k22 me'k(r)二XU) ik(1)(r)二k0r:H k k'-(0)k' E(0)(k)-E(0)(: Jk®(r)第23讲晶体的能带理论续一.在周期势场中,晶体电子的能量本征值1.弱周期近似V(r)=V(r+ RJ, Rn h22 rc ' V(r)二 2mV。,H?、vrh 22m二川甲 r,orvr严 ror*dvE(k)二
2、E(0)(k) E(1)(k) E(2)(k), (QE(k)二 0)|2rrrh2kE(k)二 E(0)(k) E(2)(k)二2-+ Z.2mek' E(0)(k) E(0)(k')AHkk'E(k)g k k=±色2一兀/a7t/aFree electron gasFree electron 雪吕編 and difTraction at BriUouiti zones罟爭牛0晋警罟一图豹 一维晶格申能和破矢女间的关采Probability densityiiStanding v/ave 1'Standing wave Z /厂Distributi
3、on of probability density in the periodic potential for sta nding wave 1 and 2The standing wave 2 piles up electrons around the positive ion cores, which means that the average pote ntial en ergy will be lower than for a free traveling wave (constant probability density). The pote ntial en ergy corr
4、esp onding to sta nding wave 1 will have higher pote ntial en ergy tha n a free traveli ng wave, si nee it piles up electr ons betwee n the ion cores (not compe nsated by positive ion s). The en ergy differe nee betwee n the sta nding waves is the origi n to the energy gap E g.2.紧束缚近似 Tight Bin di n
5、g Approximate ndelocalised statePutting a lot of atoms together: solids : atom ; molecule ; solidEnergyantibonding sbondi瑚 |ibonding santibondingbondi瑚 |ibondingantibonding pZ :antibonding pZ :valence band from p tending orbitalsconduction band from antibonding s orbitalsconducTonbani from anlitondl
6、ng p orbitalsvalence band from 耳 bonding orbitals紧束缚近似也称为原子轨道线性组合法LCAO )Lin ear Comb in atio n of Atomic Orbitals (ENERGY LEVELSELECTRONSHO. 5NO. 4NO. 3NO. 2NO.1ISOLATED ATOMELECTRON'SENERGYV(r) = V(r 十 Rn),R. =+ W3:梟2皿Hhrh2 ' 2Vatomd)2mVALENCE BAIIOCONDUCTIOH BAIW =FORBDDEN BANDATOM IH A SO
7、UD4 H?atom H?'H?atom =ht2m2Vatom(r),H?'= V(r)V(r)-Vat°m(r)H?atom i(J 2 Vatom(r )IL 2m")=ENERGY LEVELSIr)Rmam i(r - Rm) where *(r-Rr) i(r - Rm) dv 二Q v j(r) = uj(r) eik rk ', k ',_1_* NeikRmr 1Y(rneik(r-Rm)-eik®(r+RnRm)r r 1.S(r RJ= N e1ikRmr r reik (Rm -Rn): eiNeikRnle
8、ik Ri(r - R)=eikk(r)一2mr 1 r r r rr 1 r r r rV(r) N jkRm""E(k) NpikRmi(Rm)ZrR,r reikRmr reikRmr reikRmrir-E(k)+V(r)®i(r-Rm) = 0h 2IL 2mh 2r r rrI-7+ Vatom (r) E(k)+V(r) Vatom ()-2m一rr ri -E(k) V(r)-Vatom(r) 1(r -Rm)= 0l(r-Rm) = 0*(r): e'旳Rmr r'.、ik RmerRmr rik Rmmrri -E(k) 7(:
9、)宀如(:Rm)i(r - RJdOi® - Ek川件rtr - RmW 川件rvr-Vat°mr - RmFir - Jdv=000eRm-'0rrr 2i -Ek +川7宀如肿心| dv+召JR * r rr r r rm 1(r)V(r)-Vatom(r-Rm) i(r-Rm)dvrr . r rrr r 2i -E(k)-J(0) + 瓦J(Rm)eikRm=0, where J(0) =-川V(r)-Vatom(r)pi(r)| dv, a ndm :nearest*、:ineighbersJ(RJ(r)V(r)-Vatom(r - RJ ' (r
10、 - Rm)dv called asoverlap integrals.cos kza)E(k) = ;j - J(0)-、J(RJeikRmFor S states in a simple cubic lattice?E(k)八s 一 Jo 一 2JMcoskxa coskyan.n.Fig. 7.6 Comparison between the LCAO bands for Ge, computed with 肯n sp basis, and the free electron bands. From Harrison (1980).<原子轨道线性组合法得到的 锗的能带图与自由电子能
11、带图的比拟 >二.在周期势场中,晶体电子的能量本征值图示1.能带的结构的构成r r r r r r r o h2 -2 rV(r)=V(r+RJ,尺=山印十 “282+ “383, R+V(r)2muk(r)二 E(k)u:(r) =F?k(rE(k(r), 一亡 V+ZlTh+ + V(川.2m2m一2. 2V(rr)、 hkv )2mr r ro r r rQu:(r)二 u:(r &)= To confine H?'(k, ,r) uj(r)二 E(k) u:(r) in a cell.r r rrThe solutions could be u,k(r), u2k
12、(r),u3k(r),L ,un k(r) and their eigenvalues? r X r r r r G(kYr)uk(r) = E(k)ukr(r)Where H?'(k,v,r)=h22 rC 2ik2mE1(k), E2(k), E3(k), L , En(k), where n is the indexrof the energy bands.The energy bands are En( k)f for different n ¥ and different ofk = -nrb1 + 匹b? + 匹b3. For the samen and diff
13、erent k, they are just in one energy band NiN2N32.能带En(k)1的对称性(stop here)巴(&在倒空间中的周期平移对称性:巳()二En(k _Gh)也(/的时间对称性:En(k) = En(-k) r r r r rr-A)B)H?'(k, Jr) u【(r) = E(k) u:(r)IL 2mh2 、 2-c2IL 2mh22IC_ 2m2ik-2ik2ikrv)2 2+ h.k_ +2m2 22mrV(r) %(;) = E(k)ujr)+ V(r)'uk(r E(k)uk(r)+ 乎+V(r)"u
14、(r)二 E(-k)u.(r)2m斗斗u:(r)二 u(r)E*)二 E(-:)二 屮 n k(r) and 宙 n j; (r) aredegenerate.B' /的时间对称性的推论:在布里渊区边界处有警=0For 1-D lattice, E(k)二 E( k)1dE(k) dE(-k)d(-k) dE(-k) 与2d(-k)dk d(-k) dkdE(k)dkdE(-k)d(-k)k Gh2E(k) = E(k 厲戸 dE(k)-dE(k Gh)k dkdk2Gh , dE(k)dkdE(k)少 d(k)k 亠 2GhdE(-k) d(-k)_ dE(k)“匕 d(k)2dE(
15、k')d(k')1k'/dE(k)d(k)k 亠;GhdE(k) d(k)dE(k) kGhd(k)2kGhdE(k)dk=dE(k) d(k)dE(k)d(k)C)En(k)1在倒空间中的点群对称性:En(k) = En(?k),其中:?代表晶体所属点群的任意对称操作。r r rrF?(r)甲 n,k(r) = En(k)Jk()rrLet n,?(r) = n k(°?r), as°? is symmetric operationrRd) n,?(r)= En(k) n,?d);)?叩希"rkn,k5+凡冷=_:?(rRn)Q k :?
16、R is a number, so :?_1(k :?Rj 二 k :?R 垐 垐rat垎 k R r rr r r r?'(k ?Rn)?*k :?一?Rn = 7枭 Rn? r( :?f:?operatiofrn,kn,k:-Rei k Rn 心=eik症农空 nk°?i<?£ Ab “c =e n,kr(?r):?(rRn)(r)= ?= ?1kThe conclusion is 空 n,k (为卜)= n(r), and En(k)= En(bk), or En(°?k)= En(k).r r n, k-n,?(r%) 一 en,?n,3.在
17、倒空间的布里渊区中表示能带lEn(k)?的方法由于:A) fEn(k)1在倒空间中的周期平移对称性:End) = En(k _Gh)B) lEn(k):的时间对称性:En(k)二 En(k)C) En(k)1在倒空间中的点群对称性:En(k)二Enc?k)First Brillouin Zone2 -/a4 /a6 二 /aLabelCartesian CoordinatesLattice CoordinatesRangerpOO)0PointA(0,2 x/a , 0 )x(S + b3)T0 < x < 1X(0,2 TT/a , 0 % (b. + bjJPointz(x j
18、v a R 2 ir/a r 0 )% b1 + V; x b? + % (2+x) b30 < x < Iw(ff/a p 2 n/a : 0 )bd + ba + b3PointQ(n/a , (2 - x) n/a , x /a )+ x) b3 + %3-x)b30 < x < 1L(, tt旳,?r/a )% b1 + b2 + % b3PointA(x n/a T x ?r/a T x n/a )4 x bd + 4 x b2 + 14 x b30 < x < 2 1E(2 x/a . 2 jt x/a , 0 )16 x b1 + % x b2
19、 + x b30 < X <K = U(3/2 jr/a t 気 ju/a b 0 )% b1 + % bj + b,PointS(2 ?i, 2 n x/a , 0 )4 x bd + 4 x b2 + x b3%< x< 1(2 n/a , 2 ir/a T 0 )必十墟场+ X)PointrErx wru x(b)Figure 7+20 A comparison of the empty-lattice energy bands (a)日nd detailed calculations forAl ibk Again the nearly free electro
20、n character of Al is confirmed. (Harrison. Wv Pseudopotentials in 噪 Th&ory of Metals, 196&, Ad dison-Wes ley Publishing Co.r Reading. Massachusetts, Figures 3.19 and 3,20. Reprinted with permission.)Electr on bands in Al金属铝的能带图简约表示3*11 First Brillouin zone for mnicri带h crysultizing in the di
21、amond am I Afler BULcmorc. ' RepnnteJ cih pn fkisMuit )identifier the zone center (JI - U)X . L denotes the zone end ftlong a : 1 tX): dircuon. ndL -denotes the zone end along a (Hl? direct ion-wave vector4.在倒空间,面心立方 空晶格(Empty Lattice )能量图示FCC in real space r 1 a厂 § a 球+ ?r 1a2 = 2a?+ ?B C
22、C in reciprocalspaceb12a? ?刃1牛2a? ?1 4 二r 1a 2*?十?b32a?TS3 4-a-n JQd 巴 gtlJH口Free-electron bands in a face-center-cell crystalH?rJ,kr=Enkmrh2 f 2For an empty lattice,H?(r)=- +V0(r), where V0(r) = V0(r + Rn) = V0 = 0 2mik r ,n,k5(;)=川叫,卅),where(:)=叫丄(:R)嘉Gh r= ei(kGh)r(Z n,k(r)= En(k)中 n, k(r) ,wher1
23、h2 J 2ei(k (Gh)f2m二 En(k)ei(k Gh)r = En(k)二h2 k +2mr h2k + Gh En(k) =2h22mGhz)2,0点的Enk曲线:做010轴上(从 0,0,0点到 X0,过 :0,0,0点白线轴,Eik曲线:Gh=0,在第一布里渊区内 简并度为1。Ei(lf>0; Ei(k:X2_ (0 0)22 二(a0)2 (0 0)2 佥¥)2E2k曲线:Gh二占M -八、La2- ? 2 二?k; - k; a a2 二E2(k :M)E2(k:N)?kz,在第二布里渊区内从2 二到 N ,0, aa-2、2 一 乙)2 © 三
24、)2c 1 “2 h、2aa2 二Ja2m (0t)2 e2m _ aa深黄线轴,简并度为4。E3k曲线:Gh2 ?Kxa2 二(ayr;2m aJ2 (0 J2 =2(aa2m1 ,2辿)2a2 二?k;a2 二?,从点PJ a2:一到aQ-a ar hE3(k:P)二E3(k:Q) = h绿线轴,简并度为4。a2 /c2二、2/八2二、2s2二、2-12- h(0)(0 )(0 )2m IL aaa2 s 2 o 22(0)( 2m L a a: 2-)2 (0a兰)2 ,丄(禺22m aa? 4 二? E4(k)曲线:Gh = 0kx - ky a?°k;,W0,- ,0到aH
25、 0,0白线轴,简并度为1aE4(k:W)E4(k:H)=(0 0)22m _占(0 0)22m IL(0-(兰a4 2212 二 h 2)(0 0)2 =4 ( )2; a2m a牛 2212 h 2)2 (0 0)2 T()2 a2m arr ? E5(k)曲线:G 0k; 0ky蓝线轴,简并度为4。- 2 2m (0 0)2 f (0 0)24 二?kz,从点 J 0,0,a4 二2 二 4到 K0, aa aE5(k: J)二E5(k:H)二h2+ (0+ 0)2 + (0 +竺)2 Ia 一(0)2 (0 Jaarr ? Ee(k)曲线:Gh 二 0k;线轴,简并度为1。h224 2
26、2厂 |(0+0)2 + (0 + )2+(0 + 0)2 2m Lah2c 24(0 0)2 (-2m _a aE6(k:S)E6(k:T)ky a0?,从点 S0,2=禺一 2m a4-a,0到"TO 蓝.1 ,2 h 2 =4();2m a二 4 2212- h八)2 + (0十0)2-w)2Euq ±ll*!EA9/32(A2/m/)lrxlrx何(b)Fig* 7.6 Comparison beiween the LCAO bands for G© compu馆d with an sp3 basis, and the free electron band
27、s. From Harrison (1980).在空晶格上放上离子实,空晶格的能量曲线在布里渊区边界处,出 现能量断裂,产生带隙。,E(k)-0d kk429)Figure 7+20 A companson of the empty-lattice energy bands a) and detailed calculations forAl ibk Again the nearly free electron character of Al is confirmed. (Harrison, Wv Pseudopotentials in 噪 Theory of Metals, 1966 Ad
28、dison-Wes ley Publishing Co, Reading. Massachusetts, Figures 3,19 and 3,20. Re卩rinted with permission.)piiEq uoylanpuow3/32 估/)r(a)Fig, 7.6 Comparison between the basis, and the free electron bands.wave vector*E(k)=0dkk总色2LCAO bands for G离 computed with an sp3 From Harrison (1980).5.费米面在布里渊区边界处的断裂B&
29、#39; En(k)的时间对称性的推论:在布里渊区边界处有狂亦)=0ckFermi Surfaces3D Free electron gas:IJSurface of constant energy in reciprocal space: 日幻=钉=> onh in inehils!=> determines electrical propertiesFermi Surface is a sphere with radius:2D Fermi Surface: empty lattice用、tH?D Fermi "circle'*:/3b21st zone2 n
30、d zoue3皿 zone(a)(b)(cl(d>Fi呂tir电 7.T1 rhe presence or more than one periodicity may cause overlap in the integrated density of states.(J7TFflJT a:b'卜 iqiw 11stales and band strnclures giving 固 an insiikitor. (b)直 metal or a seining tu!bircaiLsr of band oerkipb suhI (e) aberaiisc of cJwtron cyncentratiGn. In (h) the overlap neednot 仇迟 th炽 satne directions in the Brilloiiin AOtie. If the overlap is sma|T with rclativek few slutrs involvi-d, wc speak of <)senihnetal.(a)<b) in 仏冲由电产的G正方豪搗中正启的班自由电子那能纯()国W1(b)二维止方晶格的尊能蛻示倉图 儀束缚近似“近自由电f
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年装箱单在应对外贸出口贸易救济措施中的策略合同3篇
- 二零二五版国际贸易特许经营合同主体欺诈风险管理与合同解除合同3篇
- 二零二五年电子显示屏广告租赁合同样本3篇
- 二零二五版代办房地产前期开发手续与建筑工程质量检测服务合同3篇
- 二零二五年采棉机驾驶员职业素养提升与劳动合同3篇
- 二零二五版能源行业冻库租赁合同含能源物资储备协议3篇
- 二零二五年酒店客房部服务员劳动合同书3篇
- 天津事业单位2025年度合同制聘用人员管理规范3篇
- 二零二五年度装修合同范本:环保装修保障您的生活品质6篇
- 二零二五版地产经纪居间合同纠纷处理指南3篇
- 【公开课】同一直线上二力的合成+课件+2024-2025学年+人教版(2024)初中物理八年级下册+
- 高职组全国职业院校技能大赛(婴幼儿照护赛项)备赛试题库(含答案)
- 2024年公安部直属事业单位招聘笔试参考题库附带答案详解
- 健康教育工作考核记录表
- 装饰工程施工技术ppt课件(完整版)
- SJG 05-2020 基坑支护技术标准-高清现行
- 汽车维修价格表
- 司炉岗位应急处置卡(燃气)参考
- 10KV供配电工程施工组织设计
- 终端拦截攻略
- 药物外渗处理及预防【病房护士安全警示教育培训课件】--ppt课件
评论
0/150
提交评论