专题8解三角形(教师版)_第1页
专题8解三角形(教师版)_第2页
专题8解三角形(教师版)_第3页
专题8解三角形(教师版)_第4页
专题8解三角形(教师版)_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、七彩教育网 教学资源免费共享平台 分享资源价值专题8 解三角形高考在考什么【考题回放】1设分别是的三个内角所对的边,则是的( A )(A)充分条件 (B)充分而不必要条件 (C)必要而充分条件 (D)既不充分又不必要条件2在中,已知,给出以下四个论断: 其中正确的是( B ) (A) (B) (C) (D)3在ABC中,已知A、B、C成等差数列,则的值为_.4如果的三个内角的余弦值分别等于的三个内角的正弦值,则()A和都是锐角三角形B和都是钝角三角形C是钝角三角形,是锐角三角形D是锐角三角形,是钝角三角形5己知A、C是锐角ABC的两个内角,且tanA, tanC是方程x2-px+1-p0(p0

2、,且pR),的两个实根,则tan(A+C)=_,tanA,tanC的取值范围分别是_ _和_ _,p的取值范围是_;(0,);(0,);,1) 6在ABC中,已知,AC边上的中线BD=,求sinA.【专家解答】 设E为BC的中点,连接DE,则DE/AB,且,设BE=x 在BDE中可得,解得,(舍去)故BC=2,从而,即 又,故,高考要考什么【考点透视】本专题主要考查正弦定理和余弦定理【热点透析】三角形中的三角函数关系是历年高考的重点内容之一,本节主要帮助考生深刻理解正、余弦定理,掌握解斜三角形的方法和技巧 学生需要掌握的能力:(1)运用方程观点结合恒等变形方法巧解三角形;(2)熟练地进行边角和

3、已知关系式的等价转化;(3)能熟练运用三角形基础知识,正(余)弦定理及面积公式与三角函数公式配合,通过等价转化或构建方程解答三角形的综合问题,注意隐含条件的挖掘 突破重难点【范例1】在ABC中,角A,B,C所对的边分别为a,b,c, b=acosC,且ABC的最大边长为12,最小角的正弦值为。(1) 判断ABC的形状;(2) 求ABC的面积。解析(1) b=acosC,由正弦定理,得sinB=sinAcosC, (#)B=, sinB=sin(A+C),从而(#)式变为sin(A+C)= sinAcosC,cosAsinC=0,又A,CcosA=0,A=,ABC是直角三角形。(2)ABC的最大

4、边长为12,由(1)知斜边=12,又ABC最小角的正弦值为,RtABC的最短直角边为12=4,另一条直角边为SABC=16【点晴】此题主要考查三角函数变换及正弦定理的应用.用正弦定理化边为角,再以角为突破口,判断出ABC的形状,最后由已知条件求出三条边,从而求面积.【文】在ABC中,若tanAtanB,试判断ABC的形状解析 由同角三角函数关系及正弦定理可推得A、B为三角形的内角,sinA0,sinB02A2B或2A2B,AB或AB所以ABC为等腰三角形或直角三角形【点晴】三角形分类是按边或角进行的,所以判定三角形形状时一般要把条件转化为边之间关系或角之间关系式,从而得到诸如a2b2c2,a2

5、b2>c2(锐角三角形),a2b2c2(钝角三角形)或sin(AB)0,sinAsinB,sinC1或cosC0等一些等式,进而判定其形状,但在选择转化为边或是角的关系上,要进行探索【范例2】中,内角.的对边分别为.,已知.成等比数列,且(1)求的值;(2)若,求的值解析(1)由得,由得,(2)由得:,因,所以:,即:由余弦定理得于是: 故【点晴】 以三角形为载体,以三角变换为核心,结合正弦定理和余弦定理综合考查逻辑分析和计算推理能力是高考命题的一个重要方向,因此要特别关注三角函数在解斜三角形中的灵活应用.【文】在ABC中,a、b、c分别为角A、B、C的对边,.(1)求角A的度数;(2)

6、若a=,b+c=3,求b和c的值.解析 【点睛】正弦定理和余弦定理在解斜三角形中应用比较广泛.【范例3】已知ABC的周长为6,成等比数列,求(1)ABC的面积S的最大值;(2)的取值范围解析 设依次为a,b,c,则a+b+c=6,b²=ac 在ABC中得,故有又从而(),即() 【点睛】 三角与向量结合是高考命题的一个亮点.问题当中的字母比较多,这就需要我们采用消元的思想,想办法化多为少,消去一些中介的元素,保留适当的主变元主变元是解答问题的基本元素,有效的控制和利用对调整解题思路是十分有益处的 【变式】在ABC中,角A、B、C的对边分别为a、b、c, ABC的外接圆半径R=,且满足

7、.(1) 求角B和边b的大小;(2) 求ABC的面积的最大值。解析 (1) 由整理得sinBcosC+cosBsinC=2sinAcosBsin(B+C)= 2sinAcosB sinA=2sinAcosB cosB= B= b=2RsinB b=3(2)= 当A=时, 的最大值是【点睛】三角函数的最值问题在三角形中的应用【范例4】某观测站C在城A的南20西的方向上,由A城出发有一条公路,走向是南40东,在C处测得距C为31千米的公路上B处有一人正沿公路向A城走去,走了20千米后,到达D处,此时C、D间距离为21千米,问还需走多少千米到达A城?解析 据题意得图02,其中BC=31千米,BD=2

8、0千米,CD=21千米,CAB=60设ACD = ,CDB = 在CDB中,由余弦定理得:,在ACD中得所以还得走15千米到达A城【点晴】 运用解三角形的知识解决实际问题时,关键是把题设条件转化为三角形中的已知元素,然后解三角形求之【变式】已知半圆O的直径AB=2,P为AB延长线上一点,OP=2,Q为半圆上任意一点,以PQ为一边作等边三角形PQR(P、Q、R为顺时针排列),问点Q在什么位置时,四边形OPRQ面积最大,并求这个最大面积.解析 设面积,而POQ面积S2=,四边形OPRQ面积.【点睛】三角函数在实际问题中的应用问题.自我提升1在直角三角形中,两锐角为A和B,则sinA·si

9、nB( B )(A).有最大值和最小值 (B).有最大值但无最小值(C).既无最大值也无最小值 (D).有最大值1但无最小值2已知非零向量与满足且则为( D )(A)等边三角形(B)直角三角形(C)等腰非等边三角形(D)三边均不相等的三角形3ABC中,3sinA+4cosB=6,3cosA+4sinB=1,则C的大小是 ( A )(A) (B) (C)或 (D)或4.一个直角三角形三内角的正弦值成等比数列,其最小内角为( A )(A)arccos (B)arcsin (C)arccos (D)arcsin 5. 已知a+1,a+2,a+3是钝角三角形的三边,则a的取值范围是 . (0,2)6已

10、知定义在R上的偶函数在区间上单调递增,若的内角A满足,则A的取值范围是 _7数列a n中,首项a12,前n项和为Sn,且.(1)判断数列a n是否为等比数列,并证明你的结论?(2)若对每个正整数n,以a n,a n+1,a n+2为边长都能构成三角形,求t的取值范围。解析 (1)略(2)【文】在中,.的对边分别为.。(1) 若a,b,c 成等比数列,求f(B)=sinB+cosB的值域。(2) 若a,b,c 成等差数列,且A-C=,求cosB的值。解析 (1) , 当且仅当时取等号, f(B)=sinB+cosB= 的值域为(2) sinA+sinC=2sinB C= sin()+sin()=

11、2sinB展开,化简,得 , , cosB=8在正三角形ABC的边AB、AC上分别取D、E两点,使沿线段DE折叠三角形时,顶点A正好落在边BC上,在这种情况下,若要使AD最小,求ADAB的值.解析 按题意,设折叠后A点落在边BC上改称P点,显然A、P两点关于折线DE对称,又设BAP=,DPA=,BDP=2,再设AB=a,AD=x,DP=x.在ABC中,APB=180°ABPBAP=120°,由正弦定理知:.BP=在PBD中,, 0°60°,60°60°+2180°,当60°+2=90°,即=15°时,sin(6

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论