版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、实用文档第3课时 切线长定理和三角形的内切圆口知识要点分类练H用她知识点1切线长定理1 .如图24234, PA切。于点A, PB切。于点B, OP交。于点C,下列结 论中,错误的是()图 24- 2-36图 24- 2-34A. Z 1 = 7 2B. PA= PBC. ABXOPD. / PAB = 2/ 12 .如图24235所示,从。外一点P引。的两条切线PA, PB,切点分别为A,B.如果/ APB=60° , PA=8,那么弦AB的长是()图 24- 2-35A. 4 B. 8 C, 4 也 D. 8 相3.如图 24 2 36,PA,PB分别与。O相切于A, B两点,若
2、/ C=65° ,则/ P的度数为()A. 50° B. 65C. 100° D. 130实用文档4 .如图24237, PA, PB是。的两条切线,A, B是切点,若/APB = 60° , PO=2,则。O的半径等于图 24 237知识点2三角形的内切圆5. 2017 广州如图 24238,。是 ABC的内切圆,则点。是ABC的()图 24- 2-38A.三条边的垂直平分线的交点B.三条角平分线的交点C.三条中线的交点D.三条高的交点6 .如图24239,点。是 ABC的内切圆的圆心,若/BAC=80° ,则/ BOC的度数为()图 24-
3、 2-39A. 130° B. 120° C, 100° D, 90°7 .如图242 40, 4ABC的内切圆。与BC, CA, AB分别相切于点 D, E, F,且AB= 18 cm, BC = 28 cm, CA=26 cm,求 AF , BD , CE 的长.C图 24 2 40。规律方法综合练提升能力8 .如图24241所示,。是 ABC的内心,过点。作EF/AB,与AC, BC分别交 于点E, F,则()图 24- 2-41A. EF>AE + BF B. EFvAE+BFC. EF=AE+BF D. EF< AE+BF9 . 2
4、016孝感九章算术是东方数学思想之源,该书中记载:“今有勾八步 ,股一十五步,问勾中容圆径几何. "其意思为:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形内切圆的直径是多少步.”该问题的答案是 步.10 .如图 24 2 42,在矩形 ABCD 中,AB=4, AD = 5, AD, AB, BC 分别与。相实用文档则DM的长为切于E, F , G三点,过点D作O O的切线交BC于点M ,切点为N,图 24 2 4211.如图 24243,。是 RtABC 的外接圆,/ABC =,P是。O外一点,PA切。于点A,且PA=PB.求证:PB是。的切线
5、;(2)已知 PA=m, /ACB=60° ,求。的半径.图 24- 2-4312.如图 24 2 44,已知在 ABC 中,/A=90° .(1)请用圆规和直尺作出。 P,使圆心P在AC边上,且与AB, 痕迹,不写作法和证明);BC两边都相切(保留作图(2)若/ B = 60° , AB=3,求。P 的面积.图 24- 2-44实用文档13 .如图24245所示,PA, PB是。的切线,CD切。于点E, PCD的周长为 12, ZAPB=60°求:(1)PA的长;(2)/COD的度数.图 24- 2-4514 .如图24246所示,正方形ABCD的边长
6、为4 cm,以正方形的一边 BC为直径 在正方形ABCD内作半圆,再过点A作半圆的切线,与半圆切于点F,与CD交于点E,求 ADE的面积.图 24- 2-46实用文档B拓广探究创新综冲刷满分15.如图24 247所示,P为。O外一点,PA, PB为。O的切线,A, B为切点,AC 为。O的直径,PO交。O于点E,交AB于点F.(1)试判断/ APB与/ BAC的数量关系,并说明理由.(2)若。的半径为4, P是。外一动点,是否存在点P,使四边形PAOB为正方形? 若存在,请求出PO的长,并判断点P的个数及其满足的条件;若不存在,请说明理由.图 24- 2-47教师详解详析1. D2. B 解析
7、根据切线长定理,得PA=PB.又/APB = 60° ,. ABP为等边三角形,,-.AB = PA=8.故选 B.3. A 解析PA, PB 是。O 的切线,.,.QAXAP, OBXBP,,乙 OAP = / OBP = 90°. /AOB = 2/C= 130° , ./ P=360° (90° +90° +130° )=50° .故选 A.4. 1 解析.PA, PB是。的两条切线,1 .ZAPO = Z BPO = 1ZAPB, /PAO=90 . 2 . / APB = 60° , . APO
8、 = 30 ° . PO=2, .-.AO = 1.5. B6. A 解析二.点O是ABC的内切圆的圆心, ./ OBC = 1/ABC , ZOCB = 1 ./BOC=180 -(ZOBC + Z OCB)= 180 -.(180。-Z A) = 90° + j/A = 90 + 40° =130° .7.解:根据切线长定理,得AE=AF, BF = BD, CE=CD.设 AF = AE = x cm,则 CE= CD= (26x)cm, BF = BD = (18-x)cm. BC =28 cm,BD + CD = 28 cm,即(18 x)+(
9、26x) = 28,解得 x=8,则 18-x= 10, 26-x=18,.AF的长为8 cm, BD的长为10 cm, CE的长为18 cm.8. C 解析如图,连接OA, OB,则OA, OB分别是/ CAB与/ CBA的平分线,/ EAO = / OAB.Z ACB , 22. EF/AB, . EOA =/OAB ,./EOA =/EAO, .-.AE = EO.同理可得:FO=BF,,EF = AE + BF.故选 C.9. 6 解析根据勾股定理,得斜边长为82+ 152 = 17,则该直角三角形能容纳的圆形 (内切圆)半径二十1:17 =3(步),即直径为6步.10. Y 解析连接
10、 OE, OF, ON, OG,如图.3设 MN=x, DN = y,根据切线长定理可得 GM=MN=x, ED = DN = y, AE = AF = 5 y, FB = BG=y-1 , CM = 6-(x+y),在 RtA DMC 中,DM2=CM2 + CD2,即(x + y)2 = 6 -(x + y)2 + 42,解得 x + y=13,即 DM=13.3311.解:证明:如图,连接OB. . OA = OB, . OAB =/OBA. PA=PB, . PAB = / PBA, / OAB + / PAB = / OBA + / PBA ,即/ PAO=/ PBO.PA是O O的
11、切线, .Z PAO = 90° , ./ PBO =90° ,即 OBPB.又OB是。O的半径PB是。O的切线.(2)如图,连接 OPPA=PB,点P在线段AB的垂直平分线上.OA = OB, 点O在线段AB的垂直平分线上, OP垂直平分线段 AB.又 BCXAB , .PO/BC, . AOP=/ACB = 60° , ./APO =30 ° ,OP= 2OA. , PA=®根据勾股定理,得AO = 1,.OO的半径为1.12.解:(1)如图所示,则。P为所求作的圆.,CA = CE.同理 DE=DB, PA=PB, PCD 的周长=PD+
12、 CD+ PC= PD+ BD + PC+ CA = PB + PA= 2PA= 12, . PA= 6, 即PA的长为6.(2) /Z P=60° , ./ PCE+Z PDE=120° , ./ACD+ / CDB =360° 120° = 240° .,. CA, CE, DB , DE 是。的切线,一 ,1 ,一OCE=Z OCA = /ACD./ ODE = Z ODB =1/CDB ,21/ OCE+/ ODE = 2(/ACD+/CDB) =120 , ./ COD= 180° 120° = 60°
13、.14 .解:设 DE = x cm,则 CE=(4 x)cm.,. CD, AE , AB均为。O的切线,EF=CE=(4-x)cm, AF=AB=4 cm,AE = AF +EF = (8-x) cm.在 RtAADE 中,AE2 = AD2+DE2,即(8 x)2= 42+ x2,解得 x= 3.,11 Saade = ?AD , DE = 2 X 4X 3 = 6(cm ).15 .解:(1)ZAPB = 2ZBAC.理由:. PA, PB为。O的切线,PA=PB, Z APO = Z BPO = 1Z APB.2在等腰三角形APB中,由“三线合一”,得PFLAB, ./ PFA=/ PFB=90° , ./ APO + Z PAB = 90.PA切。O于点A, PAXOA , ./BAC +/PAB = 90° , ./ APO = Z BAC , ./ APB = 2 / BAC.(2)存在.当四边形 PAOB是正方形时,PA=AO = OB = PB=4, poab 且 po=ab,1 /PO AB = pa pb,1cc 1 c即2PO2=PA2, 2PO2=16,,PO=4 艰.这样的点P有无数个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度跨境电商平台临时工合作协议书4篇
- 买卖坟地协议书(2024版)
- 铁皮石斛2025年度租赁合同2篇
- 二零二五版合伙购买共有产权房及共有产权转让协议3篇
- 2025年度智慧城市基础设施建设项目土地及厂房转让协议4篇
- 二零二五版复垦土地承包经营权转让合同样本3篇
- 2025年度智慧商圈场门面租赁合同样本4篇
- 2025年科技园区配套设施土地买卖合同模板3篇
- 二零二五年度智慧交通资源共享合作协议TFJEMIA103篇
- 2025年度拆除工程劳务合同范本(含竣工结算规定)4篇
- DB3303T 059-2023 政务信息化项目软件开发费用测算规范
- 康复科宣传展板
- 二零二五年度IT公司内部技术文档保密与使用规范协议3篇
- 加强教师队伍建设教师领域学习二十届三中全会精神专题课
- 2024 年广东公务员考试行测试题【A类+B类+C类】真题及答案
- 2024-2025学年人教版数学七年级上册期末复习卷(含答案)
- 湖北省学前教育技能高考《幼儿心理》历年考试真题题库(含答案)
- 山东师范大学《文学评论写作》2021-2022学年第一学期期末试卷
- 2024-2025学年人教版初一上学期期末英语试题与参考答案
- 四年级数学上册人教版24秋《小学学霸单元期末标准卷》考前专项冲刺训练
- 公司出纳年度工作总结
评论
0/150
提交评论