(最新最全)全等三角形练习题综合创新题_第1页
(最新最全)全等三角形练习题综合创新题_第2页
(最新最全)全等三角形练习题综合创新题_第3页
(最新最全)全等三角形练习题综合创新题_第4页
(最新最全)全等三角形练习题综合创新题_第5页
免费预览已结束,剩余4页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、论,请你写出其中三个正确的结论。(不要添加字母和辅助线,不要求证明)全等三角形创新题赏析随着课程改革的不断深入,一大批格调清新、设计独特的开放型、探究型、操作型等创新题纷纷在各地中考试卷上闪亮登场。近年来,有关全等三角形的创新题更令人耳目一新、目不暇接;试题以它的新颖性、 思辨性摒弃模式、 推陈出新,创造性地描绘了一个绚丽多姿 的图形世界。现就近年中考试题归类分析,希望对大家有所帮助和启发。、条件开放型例1 如图, ABC与4ABD中,AD与BC相交于。点,/ 1 = /2,请你添加一个条件(不再添加其它线段,不再标注或使用其他字母),使AC=BD ,并给出证明。你添加的条件是:。证明:一,二

2、.分析:此题答案不唯一,若按照以下方式之一来添加条件: BC=AD,/ C=/D,/ CAD= / DBC ,/ CAB= / DBA ,都可得 CABA DBA ,从而有 AC=BD 。点评:本题考查了全等三角形的判定和性质,要由已知条件结合图形通过逆向思维找出合适的条件,有一定的开放性和思考性。二、结论开放型例2 如图,已知 AB=AD ,BC=CD , AC、BD相交于E。由这些条件可以得到若干结结论1:结论2:结论3:分析:由已知条件不难得到ABC ADC ABE0ADE、 BECADEC,同时有/ DAE= / BAE、/ DCA= / BCA、/ ADC= Z ABC , AC 平

3、分/ DAB 与/ DCB 且垂直平分DB等。以上是解决本题的关键所在,也都可以作为最后结论。可解题思路具有多项发散性,体现了点评:本题是源于课本而高于课本的一道基本题, 新课程下对双基的考查毫不动摇,且更具有灵活性。三、综合开放型例3如图,点E在AB上,AC=AD,请你添加一个条件,使图中存在全等三角形,并给予证明。所添条件。你得到的一对全等三角形是 证明:分析:在已知条件中已有一组边相等,另外图形中还有一组公共边。因此只要添加以下条件之一: CE=DE ,CB=DB ,/ CAE= / DAE ,都可以直接根据 SSS或SAS证得 CAB DAB或 CAEA DAE ;并且在此基础上又可以

4、进一步得到CEBA DEB。点评:本题属于条件和结论同时开放的一道好题目,题目本身并不复杂,但开放程度较高,能激起学生的发散思维,值得重视。四、构造命题型例4 如图(4),在 ABD和 ACE中,有下列四个等式:AB=AC AD=AE / 1= / 2 BD=CE。请你以其中三个等式作为题设,余下的作为结论,写出一个真命题(要求写出已知、求证及证明过程)分析:根据三角形全等的条件和全等三角形的特征,本题有以下两种组合方式:组合一:条件结论:SSA的对应关系,则不能证得本题颇有新意,提供了一种组合二:条件结论:值得一提的是,若以或为条件,此时属于 ABC DEF ,也就不能组成真命题。点评:几何

5、演绎推理论证该如何考? 一直是大家所关注的。较新的考查方式,让学生自主构造问题,自行设计命题并加以论证, 给学生创造了一个自主探究的机会,具有一定的挑战性。这种考查的形式值得重视。五、猜想证明型例5 如图,E、F分别是平行四边形 ABCD对角线BD所在直线上两点,DE=BF ,请你以F为一个端点,和图中已标明字母的某一点连成一条新的线段,猜想并证明它和图中已有的某一条线段相等(只需研究一组线段相等即可)(1)连结;(2)猜想:;(3)证明:(说明:写出证明过程的重要依据)分析:连接FC,猜想:AC=CF。由平行四边形对边平行且相等, 有AB/CD , AD/BC , AB=CD , AD=BC

6、 ;再力口上 DE=BF , 因此,只要连接 FC,根据全等三角形的判定定理SAS,容易证得 ABEA CDF或 ADE CBF ,从而得至ij AE=CF。点评:此题为探索、猜想、并证明的试题。猜想是一种高层次的思维活动,在先观察的 基础上,提出一个可能性的猜想,再尝试能够证明它,符合学生的认知规律。 本题难度不大,但结构较新,改变了传统的固有模式。六、判断说理型例6 两个全等的含30, 60角的三角板 ADE和三角板ABC如图所示放置,E, A , C 三点在一条直线上,连结 BD,取BD的中点M,连结 ME, MC。试判断 EMC的形状, 并说明理由。分析: EMC是等腰直角三角形。由已

7、知条件可以得到:MDE=AC , / DAE+ / BAC=90 / DAB=90。连接 AM。由 DM=MB 可知MA=DM , / MDA= / MAB=45从而/ MDE= / MAC=105 即4 EDM CAM 。因止匕 EM=MC , / DME= / AMC又易得/ EMC=90 ,所以 EMC是等腰直角三角形。点评:本题以三角板为载体,没有采取原有的那种过于死板的形式,在一定程度上能激发学生的解题欲望 先判断,再说理,试题平中见奇,奇而不怪,独具匠心,堪称好题。七、拼图证明型例7 一张矩形纸片沿对角线剪开,得到两张三角形纸片,再将这两张三角形纸片摆成如下右图形式,使点 B、F、

8、C、D在同一条直线上。(1)求证 AB XED;(2)若PB=BC。请找出图中与此条件有关的一对全等三角形,并给予证明。分析:(1)在已知条件的背景下,显然有ABCA DEF ,故/A=/D;又/ANP=/DNC,因而不难得/ APN=/DCN=90 ,即 AB,ED。(2)由 AB LED 可得/ BPD=/EFD=90 ,又 PB=BC 及/PBD=/CBA根据 ASA 有PBDCBA,在此基础上,就不难得到 PNACND、 PEMAFMBo点评:本题将几何证明融入到剪纸活动中,让学生在剪、拼等操作中去发现几何结论,较好地体现了新课程下 做数学”的理念。(2)题结论开放,而且结论丰富,学生

9、可以从不同 的角度去进行探索,在参与图形的变化过程及探究活动中创造性地激活了思维,令人回味。八、阅读归纳型例8我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等。那么在什么情况下,它们会全等?(1)阅读与证明:对于这两个三角形均为直角三角形,显然它们全等。对于这两个三角形均为钝角三角形,可证它们全等(证明略)对于这两个三角形均为锐角三角形,它们也全等,可证明如下:已知:ABC、 A1B1c1 均为锐角三角形, AB=A1B1, BC=B 1c1, /C=/C1。求证: ABCA AiBiCio(请你将下列证明过程补充完整)证明:分别过点 B, Bi作BDXCA于D,BiDiCiA

10、i 于 Di,则/ BDC=/BiDiCi=90BC=B1C1, /C=/C1,BCDQ B1c1D1BD=B 1D1.(2)归纳与叙述:由(1)可得到一个正确结论,请你写出这个结论。分析:(1)由条件 AB=A 1B1, / ADB= /A1D1B1=90易得 ADBA1D1B1 ,因此/ A= Z A 1,又由/ C= Z C1, BC=B 1C1从而得到 ABCA1B1C1O(2)归纳为:两边及其中一边的对角分别对应相等的两个锐角三角形(或直角三角形 或钝角三角形)是全等的。点评:边边角问题是全等三角形判定中的难点,也是学生易出错的内容,要涉及三角形形状的分类。本题构思新颖,创造性地设计

11、了阅读情境,引领学生跨越障碍,引导学生合情推理并总结概括,考查了学生阅读理解、类比、概括等综合能力,同时也培养了学生灵活、 精细、严谨的数学思维品质。九、作图证明型例 9 已知 RtAABC 中,/ C=90 。(1)根据要求作图(尺规作图,保留作图痕迹,不写画法)作/ BAC的平分线 AD交BC于D;作线段AD的垂直平分线交 AB于巳交AC于F,垂足为H;连接ED。(2)在(1)的基础上写出一对全等三角形:并加以证明。分析:(1)按照要求用尺规作/ BAC的平分线AD、作线段AD的垂直平分线,并连接相关线段。(2)由 AD 平分/ BAC ,可以得到/ BAD= / DAC ;由EF垂直平分

12、线段 AD ,可以得至U/ EHA= / FHA= / EHD=90 , EA=AD ,从而有/ EAD= / EDA= / FAH ,再加上公共边,从而有 AEH叁 AFH叁 DEH。以上三组中任选一组即可。点评:作角平分线和线段的垂直平分线是新课标中明确提出的基本作图之一,动手作图,使学生在操作活动的过程中感受知识的自然呈现,体验数学的神秘与乐趣, 并实现数学的再创造,从而进一步感受数学的无限魅力,促进数学学习。十、实际应用型例1:(西宁市)如图1, 一块三角形模具的阴影部分已破损.只要从残留的模具片中度量出哪些边、角,就可以不带残留的模具片到店铺加工.,一块与原来的模具 ABC的形状和大

13、小完全相同的模具ABC?请简要 B-c图1 说明理由.分析:本题源于生活实际,可以利用全等三角形的知识加以解决解:只要度量残留的三角形模具片的/B, /C的度数和边BC的长.因为两角及其夹边对应相等的两个三角形全等(ASA .评注:这道题考得新颖,因为它就是我们生活中的事情,充分体现了数学来源于生活又用于解决生活实际问题的理念,这也是新课程标准所提倡的 卜一、操作探索型例2:(河南省)复习“全等三角形”的知识时,老师布置了一道作业题:“如图2,已知在 ABC中,AB=AC P是 ABC内部任意一点, 将AP绕A顺时针旋转至 AQ使/ QAPW BAC图2图3BQ=CP只须给出以及动手操作能力和

14、探索精神,已连接 BQ CP 贝U BQ=CP小亮是个爱动脑筋的同学,他通 过对图 2 的分析,证明了 AB隼4ACP从而证得 BQ=C吃后, 将点P移到三角形ABC之外,原题中 的条件不变,发现“ BQ=CP仍然成 立,请你就图3给出证明.分析:这是一道操作探索型试题,解题时需先通过观察、测量,探求猜想出BQ与CP满足的数量关系,再利用全等三角形的知识进行证明.本题小亮已探求得出 证明即可.解:. / QAPW BAC,/QAP +/ PAB= /BAC+/PAB,即/ QAB= / PAC 又AQ=APAB=AC AB箪 ACP(SAS, . BQ=CP评注:此类试题注重考查同学们对基础知

15、识的掌握, 逐渐成为中考的热点题型.十二、开放探究型例3:(天门市)如图 4,已知AE= CF, / A= /C,要 使 ADF CBE还需添加一个条件 (只需写一 个).分析:这是一道条件开放型试题,命题中已给出结论,正确理解、灵活运用但题设的条件不充分,需从不同的角度去寻找使这个结论成立的条件, 三角形全等的条件是求解本题的关键解:由 AE= CF可得 AE+EF= CF+EF 即 AF= CE,又已知/ A= Z C,要使 AD阵 CBE可根据 SASS添加 AD= CB,或根据 AAS添加/ D= / B,或根据 ASA添加/ AFD= /CE睹条件中的任何一个.评注:这种题型具有答案不唯一的特点,结构较新,改变了过去的固有模式,创造性的激活了学生的思维.例4:(南宁市)如图 5,在 ABC中,D是BC的中点,DEL AB,DF AC,垂足分别是E、F, BE=CF(1)图中有几对全等的三角形?请一一列出;(2)选择一对你认为全等的三角形进行证明.分析:本题属于结论开放型试题,命题中提供一定的条件,但满足条件的结论不唯一.解题时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论