




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、摘要房地产业发展涉及到国计民生的众多行业,其受各种因素的多元化影响,对于房产业发展相关问题的有效研究可以对国民经济的健康可持续发展产生积极的影响。本文针对房地产发展的三个重要问题,分别建立了相应的数学模型进行了分析,并得出了相应的结论。对于第一问,我们选取了房地产开发投资,商品房销售价格与全市生产总值有着密切关系的指标进行研究。我们采用多元线性回归模型利用SPSS统计软件分别对两个指标与全市生产总值进行线性回归,得到线性回归方程和相关系数。即y1=0.5819*x1+0.4181*x2-0.07R2=0.843并由图1得出房地产发展与经济发展,他们之间相互拉动,又相互牵制。随着市场经济的不断完
2、善,他们之间的互动越来越强。对于问题二,我们运用灰色关联分析模型和相关分析方法,得出影响房地产发展的主要因素及关联系数如下表:城市居民可支配收入R1=0.69房屋租赁价格指数R2=0.67房屋销售价格指数R3=0.65居民居住房价R4=0.81房地产开发投资R5=0.70居民消费价格指数R6=0.60居民居住消费价格指数R7=0.61对于问题三,为了预测2015年人均住房面积我们建立了灰色预测模型,模型如下:X1(k+1)=X0(1)-u/a*e-ak u/a;X0(k+1)=X1(k+1)-X1(k) X1(k+1)=1557.4* e-0.0155*K -1557.4; X0(k+1)=1
3、557.4*(1557.4* e-0.0155*K -1557.4* e-0.0155*(K-1) ) ;k=1,2,.n X0(k+1)表示第K年的人均住房面积。X0(1)=19.4;对2015年该市人均住房面积进行了预测并得出,2015年该市人均住房面积达到28.85平方米。关键词:多元先行回归 SPSS 灰色关联分析 相关分析 灰色预测 综合评价方法一 问题重述长久以来,房地产问题都得到了国人很大的关注关于对房地产问题的分析和预测一直没有停止过。住房问题是关系民生的大问题。自2001 年以来中国经济进入了以住房、汽车、电子通讯、能源和基础原材料业较快发展的新一轮增长周期。2004 年1-
4、2 月份固定资产投资完成额增长53,经济运行中出现了新的不平衡,能源、运输供应紧张,居民消费品价格指数(CPI)开始走高(6 月同比上涨5),中国经济运行出现偏热的迹象。从2003 年下半年开始,房地产业在发展过程中出现了部分地区房地产投资过热、房价上涨过高的现象,各项指标表明中国房地产存在一定程度的泡沫。为保持经济健康稳定的发展,近年来,中央政府综合运用经济、法律和必要的行政手段,以区别对待和循序渐进的方式,对房地产业连续出台了一系列宏观调控政策。但房地产市场仍然存在住房供给结构不合理、部分城市房价上涨太快、中低收入居民住房难以满足等问题。2008 年,在世界金融危机和国内经济下行的双重外部
5、压力下,在行业自身调整的内部推动下,全国房地产市场出现了周期性变化,由增长期转变为衰退期,2009 年世界经济形势非常严峻,这场百年一遇的金融危机,目前尚看不出何时会到底,最坏的时间或许还没有到来,世界经济步入衰退,已没有什么悬念,这必将对我国房地产业产生巨大影响。09 年刚刚开始,房地产业陷入了低靡期,房价会不会继续下跌呢?自己辛辛苦苦赚的钱,会不会买了房就贬值呢?那么,在经济形势不容乐观的今天,购房者是该出手时就出手,还是持币待购,继续观望呢?政府究竟是否应该救市?中国房地产究竟是否存在泡沫?当房价已经超过居民消费能力时,既要维持房价上涨、又要拉动交易量上升,是很困难的。房地产业要健康发展
6、,需要在房价和交易量的合理平衡上做文章。在本次数学建模的A 题中我们有以下问题需要解决:问题一:试建立数学模型阐述房地产市场发展与经济发展的关系。2009 年该市的房地产市场发展形势如何?问题二:试建立数学模型分析影响房地产业发展的因素,该模型对于政府调控房地产市场有何指导作用?问题三:作为建设小康社会的一项重要指标,在房地产业健康稳定发展的前提下(可参照附件一中的部分指标),欲使该市人均住房面积在2015 年达到30 平方米,政府应采取哪些措施?二 模型的基本假设1.题目提供的数据在误差允许范围内真实有效;2. 2015 年之前房地产业健康稳定发展;3.在着重讨论主要因素时,其他的次要因素对
7、主要因素的影响可以忽略;4假设剔除材料中空缺的数据对计算结果没有影响;.三 符号说明房地产开发投资X1商品房销售价格X2全市生产总值Y1城市居民可支配收入M1房屋租赁价格指数M2房屋销售价格指数M3居民居住房均价M4房地产开发投资M5居民消费价格指数M6居民居住消费价格指数M7房地产业生产总值增加值Y2残差 系数i常数0随机变量i第k年的人均住房面积X0(k+1)X0前k+1项累加和X1(k+1)四 问题分析与模型准备 第一问中结合模型准备阶段做的工作,首先多元线性回归,刻画了房地产市场发展与宏观经济之间的关系。并且建立多元线性回归模型 y1=0+1*X1+2*X2+ ;通过对附件二可知:在近
8、几年房地产市场发展与经济发展两者之间互动关系有一个机构性变化,由于利率缺乏弹性,通过利率来调整房地产市场,成效不大,但是信贷规模的变化对房地产投资有较大的影响。y1=0.5819x1+0.4181x2-0.07+函数的结果表明:房地产投资的冲击对经济增长有长期影响,个别企业对相关行业的拉动作用也比较大。 解决第二问时,我们利用关联度分析的方法得到房地产市场发展与经济发展的定量关系。并结合相关分析加以检验。 对于第三问,我们利用主成分分析法建模量化得到影响房地产业发展的因素。基于房地产业健康稳定发展的前提,我们针对GM(1,1)模型(灰色预测模型)的应用做了详细分析,提出了在本题中的不足,采用了
9、的改进的GM(1,1)模型2,效果良好。预测出2015年该市人均住房面积将达到28.85平方米,欲使该市人均住房面积在2015 年达到30 平方米,在模型的进一步讨论中,我们针对在我国现阶段发展中较为突出的房产泡沫与用户需求的矛盾问题采用综合评价法。最后,我们根据对结果的分析提出了一些有价值的建议。五 模型建立与求解5.1 问题一模型的求解 模型的准备 房地产业作为新的经济增长点,其投资规模的快速发展会促使固定资产投资和钢铁、水泥等行业的持续增长,并对煤电油运鞥行业产生巨大压力,影响国民经济的协调发展。而作为一般投资品,像其他金融产品一样,其价格的极不稳定性对经济的影响也是人们关注的热点问题。
10、因此,本模型从房地产投资和房地产价格的冲击入手,来分析房地产业的波动对国民经济的影响。 首先,对房地产业的发展进行分析可知,它主要由房地产开发投资和商品房销售价格两个因素决定。因次以房地产开发投资和商品房销售价格两个指标作为自变量,以全市生产总值作为因变量进行回归分析,建立多元线性回归模型如下:Y1=0+1*X1+2*X2+ ;将房地产开发投资和商品房销售价格以及全市生产总值这三个变量进行标准化处理,并用SPSS软件解得如下:回归系数和置信区间如下表系数0=-0.071=0.58192=0.4181置信区间-1.888,0.0790.283,0.9030.129,0.722统计检验量 R=0.
11、918 R2=0.843 F=51.060 p=0.05 残差分析ModelSum of SquaresdfMean SquareFSig.1Regression1.6562.82851.060.000aResidual.30819.016Total1.96521a. Predictors: (Constant), 标准化房地产开发投资, 标准化商品房销售价格b. Dependent Variable: 标准化全市生产总值CoefficientsaModelUnstandardized CoefficientsStandardized CoefficientstSig.BStd. ErrorB
12、eta1(Constant)-.070.057-1.227.235标准化价格.5819.148.5584.004.001标准化投资.4181.142.4193.007.007a. Dependent Variable: 标准化全市生产总值得出多元线性回归方程,如下Y1=0.5819x1+0.4181x2-0.07+对所得模型进行检验:做出残差图形如下残差的正态分布检验:经残差检验以及R2=0.843可以看出该模型基本成立。对房地产开发投资和商品房销售价格以及全市生产总值做出随时间变化的趋势图如下:图1由多元线性回归模型及图1可以看出房地产开发投资和商品房销售价格与全市生产总值呈正相关,即房地产
13、发展与经济发展,他们之间相互拉动,又相互牵制。随着市场经济的不断完善,他们之间的互动越来越强。2008年,在世界金融危机和国内经济下行的双重外部压力下,在行业自身调整的内部推动下,全国房地产市场出现了周期性变化,由增长期转变为衰退期, 在2009 年,该市的房地产产业将进入一个新的发展阶段。由于经济危机的影响,城镇居民的人均收入呈现下降趋势,由此引发中国的房地产市场的急剧下滑。由图可以看出,呈现了下降的趋势,长期看来,该市的房地产市场发展前景仍然是看好的。5.2 问题二模型的求解 由第一问可知房地产业的发展与经济的发展,他们之间相互拉动,又相互牵制因此分析影响房地产业发展的因素对经济的发展起至
14、关作用。由此,我们运用了灰色关联分析模型。 关联分析方法是根据因素之间发展趋势的相似或相异程度,亦即“灰色关联度”,作为衡量因素间关联程度的一种方法。灰色系统理论提出了对各子系统进行灰色关联度分析的概念,意图透过一定的方法,去寻求系统中各子系统(或因素)之间的数值关系。因此,灰色关联度分析对于一个系统发展变化态势提供了量化的度量,非常适合动态历程分析。确定分析序列。在对所研究问题定性分析基础上,确定一个因变量因素和多个自变量因素。设因变量数据构成参考序列X0,各自变量数据构成比较序列Xi( i=1,2,_ ,n)构成如下矩阵: X0(1) X1(1)Xn(1)X0(2) X1(2)Xn(2).
15、(X0,X1,.,Xn)=.X0(n) X1(n)Xn(n)对变量序列进行无量纲化。原始变量序列具有不同量纲或数量级,需进行无量纲化,常用无量纲化方法有均值化法和初值化法等。求差序列,最大值和最小值,形成下列矩阵X1(1)-X0(1) X2(1)-X0(1).Xn(1)-X0(1)X1(2)-X0(2) X2(2)-X0(2).Xn(2)-X0(2). . .X1(n)-X0(n) X2(n)-X0(n).Xn(n)-X0(n)根据公式计算关联系数为两级最小差为两级最大差称为分辨率,0<<1,一般取=0.5R(i)表示第X(i)个因素和因变量X0关联度。 关联度矩阵中每列的平均数代
16、入数值求的:关联度矩阵如下: R=0.7859290.5693650.548150.4362080.4154730.4547240.5086440.5575130.402040.3826710.9469630.6336060.3333330.3514470.4697550.4188050.3517430.7360820.9711760.360670.3464920.578030.6577460.6569180.9821340.5702980.6413880.6439580.7601890.995710.9401440.7722740.5881190.7783160.9525761110.982
17、596110.833267R RR R1=0.69 R2=0.67 R3=0.65 R4=0.81 R5=0.70 R6=0.60 R7=0.61; 计算结果表明,居民居住房均价,房地产开发投资与房地产发展的的关联程度较大,城市居民可支配收入,房屋租赁价格指数 次之,居民消费价格指数影响最小。由上可知政府应该主要通过适度控制房地产开发投资并有效控制房价过分增长。5.3 问题三模型的求解 灰色系统理论中的灰色预测GM(1,1)模型1因其所需信息少、运算方便、建模精度较高而被广泛应用于各种预测领域。所以我们在房地产业健康稳定发展的前提下,并根据2003至2008年的数据使用灰色预测模型来预测201
18、5年人均住房面积。Step1:设时间序列X0(k)=X0(1),X0(2),X0(n),共有n个观察值,其中X0(k)0 (K=1,2,n)对X0作一次累加生成列X1,即X1(k)=i=1kX0(i)=X1(k-1)+X0(k);Step2:定义矩阵B与Yn,其中X0(2)B=(-1/2X1(1)+X1(2)1-1/2X1n-1+X1(n)1 Yn=X0(3) X0(n) a=(a,u)T=(BTB)-1BTYn;求解微分方程:dX1dt+aX1=u可的预测模型:X1(k+1)=X0(1)-u/a*e-ak u/a;k=0,1,2 .n可的预测值:X0(k+1)=X1(k+1)-X1(k);
19、k=1,2 .n当1<k<n时上式反映原始数据的变化情况,当k>n时,上式为预测值。模型求解:X0=19.4 24.22 25.01 25.75 23.7 26.8 做一次累加后的序列X1(K)=19.4 43.62 68.63 94.38 118.08 144.88Setp3:由矩阵B的值计算得:B=-31.51 -56.125 -81.505 -106.23 -131.481 1 1 1 1TYn=24.22 25.01 25.75 23.7 26.8 代入数据求的:a=a,u'=-0.0155 23.8386X1(k+1)=X0(1)-u/a*e-ak u/a=
20、19.4+1538*e0.0155*k -1538 ; k=0,1,2.nStep4:进一步可求的:X0(k+1)=1557.4* (e0.0155*k - e(0.0155*(k-1) ); k=1,2n代入数据k=12求的2015年人均住房面积为28.85平方米。通过分别计算绝对误差与相对误差,进行残差检验:作图如下: 结果分析:由残差分析可知,本模型的预测误差较小变动均匀预测精度较高,但是经过数据检验预测,我们发现长序列预测的误差通常大于短序列,并且预测的时间越远,误差越大,而预测的时间越近,误差就越小。而且由本模型预测的2015年城区人均住宅使用面积为28.85平方米未达到题目中要求的
21、30平方米,所以在房地产业健康稳定发展的前提下,政府应采取如下措施:经附表二中统计分析的:1998-2008政府为应对房地产市场发展分别针对存款准备金率,存贷款利率,最低首付款,所做的调整如下:存款准备金率:2004年4月由7%-7.5%,2007年12月调增至14.5%,2008年1月由14.5%调至15%,2008年3月由15%调整至15.5%,2008年4月15.5%调整至16%,2008年10月两次分别下调0.5%和0.27%。最低首付款:2005年3月最低首付款在20%-30%之间,2007年9月大于40%。2008年9月由调至20%。有附件数据可知:2003-2008年住宅用房和其
22、他商用房平均空置率分别为:10.48%和32.10%,2003-2008年年度家庭全部收入与房价之比为1:17.88,国际标准为:1-2.55。2003年年度居民个人月收入与每平米房价之比0.302003-2008年年度全部贷款中房地产类贷款的比重25.38%,超过20%以上为严重经济泡沫。综上可知:假设在房地产业健康发展的前提下政府应采取的措施如下:(1) 适度控制房价上涨,六 模型的优化与改进6.1模型的优点 对于问题一所建立的多元线性回归模型,能够较准确的反映出房地产市场发展与经济的发展相互拉动,又相互牵制。关于问题二,我们应用灰色关联分析模型,对影响房地产业发展的因素进行深入分析,通过
23、对这些因素的分析,得出一些促进房地产业发展的建议,而且此模型对政府如何提高房地产业的发展,做出了明确的指导。对于问题三,我们建立了灰色预测模型,根据材料中给出的2003年至2008年的数据,我们预测出2015年城市居民人均住房面积为28.85平方米,且此预测模型误差较小,适用于各方面类似的时间序列预测问题,具有很好的普适性。此模型层层替推,之间的逻辑清晰,便于理解。.模型考虑的比较全面,运用此模型可以十分准确地推测各因素对房地产产业的发展影响比重。6.2模型的缺点 由于材料中所给数据不全,且有许多数据丢失,所以建立的模型有一定的误差。前期准备时所需数据量庞大,不容易收集,而且处理时容易出错。模
24、型中用到的一些数据会是人的一些经验所得,所以会有一些误差。对于问题三所求的时间序列预测模型是根据时间的变化而变化的,所以受时间影响较大,预测时间越近,误差越小,预测时间越远,误差越大,因此根据所建立的灰色预测模型来求2015年的城市居民人均居住面积,结果有一定的误差。6.3模型的改进 在建模预测的过程中,我们发现保有量的预测与人口的预测有相似之处,然而我们知道随着政府政策,家庭收入,投资倾向等因数对房地产的发展有着至关重要的作用,所以在本数学模型的建立过程中,我们一直是假设发地产市场是健康的向前发展的。换言之,从结果中我们可以看出我们模型在对一定情况下的预测是准确的,但是,由于上述原因,就不一定能准确
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 28803.1-2025消费品安全风险管理第1部分:导则
- GB/T 18204.5-2025公共场所卫生检验方法第5部分:集中空调通风系统
- 邮政快递智能技术专业教学标准(高等职业教育专科)2025修订
- 2025年中国家用光脱毛器具行业市场全景分析及前景机遇研判报告
- 中国鞋面横织机行业市场竞争格局及投资前景展望报告
- 中医培训课件 哪些
- 2025年中国车床行业市场深度评估及投资策略咨询报告
- 中国幕墙装饰板市场规模预测及投资战略咨询报告
- 2025年 重庆市长寿区教育事业单位定向招聘考试笔试试题附答案
- 2025年 新疆铁道职业技术学院招聘考试笔试试题附答案
- 沟通与演讲2023学习通超星课后章节答案期末考试题库2023年
- 高二区域地理 撒哈拉以南的非洲课件
- 数字化精密加工车间项目可行性研究报告建议书
- 2022年《内蒙古自治区建设工程费用定额》取费说明
- Q∕GDW 10799.6-2018 国家电网有限公司电力安全工作规程 第6部分:光伏电站部分
- 宁波市建设工程资料统一用表(2022版)1 通用分册
- 危险化学品安全技术说明书MSDS—汽油
- 三甲医院必备医疗设备清单大全
- 暴雨产流计算(推理公式_四川省)
- 中考数学复习经验交流PPT课件
- 内部控制专项审计实施方案
评论
0/150
提交评论