图像去噪实验报告_第1页
图像去噪实验报告_第2页
图像去噪实验报告_第3页
图像去噪实验报告_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上 姓名: 学号: 图像去噪数字图像处理 实验二报告一、实验目的1. 熟悉图像高斯噪声和椒盐噪声的特点;2. 掌握利用均值滤波和中值滤波去除图像噪声的方法。二、实验内容1. 打开Matlab 编程环境。2. 读入图像,在图像上分别添加高斯噪声和椒盐噪声。3. 显示原图像和噪声图像。4. 对噪声图像进行均值滤波和中值滤波处理。5. 显示处理效果图。 三、实验程序及结果1.实验程序2.实验结果图 1. 原图像 图 2. 加入噪声后的图像 图 3. 处理后的图像四、实验思考:1. 比较均值滤波和中值滤波的对高斯噪声和椒盐噪声图像的处理效果,分析原理?答:(1).从实验结果可以

2、看出:对于加了椒盐噪声的图像,利用中值滤波抑制噪声得到的效果更好;对于加了高斯噪声的图像,利用均值滤波抑制噪声得到的效果更好;均值滤波是图像变得平滑、模糊;中值滤波对高斯噪声的抑制作用更差,中值滤波适合处理含椒盐噪声的图像。(2).分析如下: 椒盐噪声包含椒噪声(低灰度值)和盐噪声(高灰度)。若进行中值滤波,对模板中的像素从小到大排列,取模板中排在中间位置的像素值来替代原来的像素值,则最亮和最暗的点一定被排在两侧,排在中间位置的像素值接近原像素值,这样就能达到滤除噪声的目的。若进行均值滤波,用模板中全体像素点均值来替代原来的像素值,则较大和较小的像素值对结果影响大,这样就把椒盐噪声平均到了最终结果中,不利于滤除噪声。高斯噪声是服从高斯分布(即正态分布)的噪声。若进行中值滤波,则随机地将噪声像素点的灰度值加到了最终得到的像素值中,不利于滤除噪声。若进行均值滤波,则可以将高斯噪声取平均隐含于最终得到的像素值中,能较好地滤除噪声。由于均值滤波是用模板中全体像素点均值来替代原来的像素值,所以它在降低噪声的同时会使图像模糊,特别是边缘和细节处。而且邻域越大,在去噪能力增强的同时模糊程度也越严重。由于中值滤波对模板中的像素从小到大排列,取模板中排在中间位置的像素值来替代原来的像素值,则最亮和最暗的点一定被排在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论