教学设计(教案)3 (2)_第1页
教学设计(教案)3 (2)_第2页
教学设计(教案)3 (2)_第3页
教学设计(教案)3 (2)_第4页
教学设计(教案)3 (2)_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、教学设计(教案)模板基本信息学 科数学年 级初三教学形式讲授课教 师江苑单 位五华县兴华中学课题名称第一章 证明(二)角平分线(一)学情分析本节在学习了直角三角形全等的判定定理及已有公理和学过的定理的基础上进一步学习角平分线的性质和判定定理及相关结论.学生已探索过角平分线的性质,而此处在学生回忆的基础上,尝试着证明它,学习角平分线的画法,并还能说明所作的射线是角平分线的理由,进一步讨论三角形三个内角平分线的性质教学目标1知识目标:角平分线的性质定理的证明角平分线的判定定理的证明用尺规作已知角的角平分线2能力目标:进一步发展学生的推理证明意识和能力,培养学生将文字语言转化为符号语言、图形语言的能

2、力 体验解决问题策略的多样性,提高实践能力3情感与价值观要求 能积极参与数学学习活动,对数学有好奇心和求知欲在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心4教学重点、难点重点角平分线的性质和判定定理的证明用尺规作已知角的角平分线并说明理由难点正确地表述角平分线性质定理的逆命题正确地将文字语言转化成符号语言和图形语言,对几何命题加以证明教学过程第一环节:设置情境 温故知新搭建探究平台问题我们曾用折纸的方法探索过角平分线上的点的性质,步骤如下:从折纸过程中,我们可以得出CD=CE,即角平分线上的点到角两边的距离相等你能证明它吗?第二环节:展示思维空间.构建活动空间请同学们自己尝试着证明

3、它,然后在全班进行交流已知:如图,OC是AOB的平分线,点P在OC上,PDOA,PEOB,垂足分别为D、E求证:PD=PE证明:1=2,OP=OP,PDO=PEO=90°,PDOPEO(AAS)PD=PE(全等三角形的对应边相等)(教师在教学过程中对有困难的学生要给以指导)我们用公理和已学过的定理证明了我们折纸过程中得出的结论我们把它叫做角平分线的性质定理,我们再来一起陈述:(用多媒体演示)角平分线上的点到这个角的两边的距离相等我们经常用逆向思维得到一个原命题的逆命题你能写出这个定理的逆命题吗?我们在前面学习线段的垂直平分线时,已经历过构造其逆命题的过程,我们可以类比着构造角平分线性

4、质定理的逆命题如果有一个点到角两边的距离相等,那么这个点必在这个角的平分线上此时有学生提问:“我觉得这个命题是假命题角平分线是角内部的一条射线,而角的外部也存在到角两边距离相等的点”教师肯定这位同学思考问题很仔细并加以解释。事实上,从同一点出发的两条射线一般组成两个角,而“角的内部”通常是指其中小于180°的角的内部,其余部分为角的外部如上图所示,到AOB两边距离相等的点的集合应是射线OC、OD、OE、OF,但其中只有射线OC(即在AOB内部的射线)才是AOB的平分线因此逆命题中应加上“在角的内部”的条件再来完整地叙述一下角平分线性质定理的逆命题。在一个角的内部且到角的两边距离相等的

5、点,在这个角的角平分线上它是真命题吗? 你能证明它吗?生没有加“在角的内部”时,是假命题 (由大家自己独立思考完成,在全班讨论交流,对困难学生可个别辅导)证明如下:已知:在么AOB内部有一点P,且PD上OA,PEOB,D、E为垂足且PD=PE,求证:点P在么AOB的角平分线上证明:PDOA,PEOB,PDO= PEO=90°在RtODP和RtOEP中OP=OP,PD=PE,RtODP RtOEP(HL定理)1=2(全等三角形对应角相等)逆命题利用公理和我们已证过的定理证明了,那么我们就可以把这个逆命题叫做原定理的逆定理我们就把它叫做角平分线的判定定理。你能用什么办法平分一个已知角呢?

6、能利用角平分线的性质定理和判定定理平分一个角吗?请在小组内交流学生提出:可以用量角器、三角尺、角尺等以前常见的方法教师提出:学习的是用直尺和圆规平分一个已知角已知:AOB(如图)求作:射线OC,使AOC=BOC作法:1、在OA和OB上分别分别截取OD、OE,使OD=OE2分别以D、E为圆心,以大于DE的长为半径作弧,两弧在么AoB内交于点C3作射线OCOC就是AOB的平分线(教学时,教师可以边介绍作法,边让学生动手完成整个操作过程)完成做法后,请学生说明OC为什么是AOB的平分线,与同伴交流从作图的过程中,不难发现OD=OE,CE=CD,OC=OC,OCECOCD(SSS)1=2,即OC是AOB的角平分线第三环节:随堂练习 及时巩固 如图,AD、AE分别是ABC中A的内角平分线和外角平分线,它们有什么关系?解:AD平分CAB又1=2=CAB又AE平分CAFCAB+CAF=180°,3=4= CAFCAB+CAF=180°1+3= (CAB+CAF)=×180°=90°,即ADAE第四环节:课时小结这节课我们在折纸的基础上,证明了角平分线的性质定理和判定定理,并学习了用尺规作一个已知角的角平分线,进一步发展学生的推理证明意识和能力第五环节:课后作业1习题18第1,2,3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论