高等数学偏导数第四节复合函数求导法则题库_第1页
高等数学偏导数第四节复合函数求导法则题库_第2页
高等数学偏导数第四节复合函数求导法则题库_第3页
高等数学偏导数第四节复合函数求导法则题库_第4页
高等数学偏导数第四节复合函数求导法则题库_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上【】【计算题】【较易0.3】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设,其中,求。【试题答案及评分标准】解:(7分)(10分)【】【计算题】【较易0.3】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设,求。【试题答案及评分标准】解:(7分)(10分)【】【计算题】【较易0.3】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设,求。【试题答案及评分标准】解:(7分)(10分)【】【计算题】【较易0.3】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设,求。【试题答案及评分标准】解:(7分)(

2、10分)【】【计算题】【较易0.3】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设,求。【试题答案及评分标准】解:(8分)(10分)【】【计算题】【中等0.5】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设求。【试题答案及评分标准】解:(4分)(7分)(10分)【】【计算题】【较易0.3】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设,而,求。【试题答案及评分标准】解:(8分)(10分)【】【计算题】【中等0.5】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设,求。【试题答案及评分标准】解:(8分)或(10分)(6

3、分)(10分)【】【计算题】【中等0.5】【多元复合函数的求导法则】【全微分】【试题内容】设,求。【试题答案及评分标准】解:(4分)(8分)(10分)【】【计算题】【中等0.5】【多元复合函数的求导法则】【全微分】【试题内容】,求 对的全微分。【试题答案及评分标准】解:(3分)(7分) 【】【计算题】【中等0.5】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设,求 对 的全微分。【试题答案及评分标准】解:(6分)(10分)【】【计算题】【中等0.5】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设,求。【试题答案及评分标准】解:(4分)(8分)(10分)【

4、】【计算题】【中等0.5】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设,求。【试题答案及评分标准】解:(5分)(10分)【0904 14】【计算题】【中等0.5】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设,而,求。【试题答案及评分标准】解:(5分)(10分)【】【计算题】【中等0.5】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设,求。【试题答案及评分标准】解:(4分)(10分)【】【计算题】【中等0.5】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设,函数有一阶连续偏导数,求。【试题答案及评分标准】解:(1

5、0分)【】【计算题】【中等0.5】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设,求。【试题答案及评分标准】解:(5分)(10分)【】【计算题】【中等0.5】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设,求。【试题答案及评分标准】解:(5分)设(10分)【】【计算题】【较易0.3】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】,求对的全微分。【试题答案及评分标准】解:(2分)(10分)【】【计算题】【中等0.5】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设,求。【试题答案及评分标准】解:记,则(3分)(10分)【

6、】【计算题】【较易0.3】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】,求 z对 的全微分。【试题答案及评分标准】解:(2分)(7分)(10分)【】【计算题】【中等0.5】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设,求。【试题答案及评分标准】解:(5分)(10分)【】【计算题】【较易0.3】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设,求。【试题答案及评分标准】解:设则(8分)(10分)【】【计算题】【中等0.5】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设,其中,求。【试题答案及评分标准】解:(5分)(1

7、0分)【】【计算题】【较易0.3】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设,其中,求。【试题答案及评分标准】解:(8分)(10分)【】【计算题】【中等0.5】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设,其中,求。【试题答案及评分标准】解:(8分)(10分)【】【计算题】【较易0.3】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设,求【试题答案及评分标准】解:(3分) (8分)(10分)另解:设,所以(3分)(6分)(8分)(10分)【】【计算题】【中等0.5】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设

8、,求。【试题答案及评分标准】解:(6分)(10分)【】【计算题】【较易0.3】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设,求。【试题答案及评分标准】解:(3分)(8分)(10分)【】【计算题】【中等0.5】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设,求。【试题答案及评分标准】解:(4分)(8分)(10分)【】【计算题】【较易0.3】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设,求。【试题答案及评分标准】解:【】【计算题】【中等0.5】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设,求。【试题答案及评分标准

9、】解:(8分)(10分)70、(8分)(10分)【】【计算题】【较易0.3】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设,求。【试题答案及评分标准】解: (3分)(6分)(9分)(10分)【】【计算题】【中等0.5】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设,求。【试题答案及评分标准】解:(3分)(5分)(8分)(10分)【】【计算题】【较易0.3】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设,求。【试题答案及评分标准】解:(10分)【】【计算题】【中等0.5】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设

10、,求。【试题答案及评分标准】解:(2分)(10分)【】【计算题】【较易0.3】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设,求。【试题答案及评分标准】解一:(6分)(10分)解二:记则(6分)故,(10分)【】【计算题】【中等0.5】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设,求。【试题答案及评分标准】解:(4分)(10分)【】【计算题】【较易0.3】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设是可微函数,其中,求。【试题答案及评分标准】解:(5分)(10分)【】【计算题】【中等0.5】【多元复合函数的求导法则】【多元复合函数

11、的求导法则】【试题内容】设,求在点处的三个偏导数的值。【试题答案及评分标准】解:(4分)(7分)(10分)【】【计算题】【较易0.3】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设,求。【试题答案及评分标准】解:(4分)(8分)(10分)【】【计算题】【中等0.5】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设,求。【试题答案及评分标准】解:(4分)(8分)(10分)【】【计算题】【较易0.3】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设,求。【试题答案及评分标准】解:(2分)(10分)【】【计算题】【中等0.5】【多元复合函数的求

12、导法则】【多元复合函数的求导法则】【试题内容】设,求。【试题答案及评分标准】解:【】【计算题】【较易0.3】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】求函数的全微分。【试题答案及评分标准】解:(5分)(10分)83、(4分)(5分)(10分)或【】【计算题】【中等0.5】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设,求。【试题答案及评分标准】解:(7分)或(10分)【】【计算题】【较易0.3】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设,求。【试题答案及评分标准】解:(3分)(6分)(10分)【】【计算题】【中等0.5】【多元复

13、合函数的求导法则】【多元复合函数的求导法则】【试题内容】设,求。【试题答案及评分标准】解:(4分)(10分)【】【计算题】【较易0.3】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设,求。【试题答案及评分标准】解:(4分)(6分)(10分)【】【计算题】【中等0.5】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设,而,求。【试题答案及评分标准】解:(8分)(10分)【】【填空题】【较易0.3】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设,则= 。【试题答案及评分标准】10分【】【填空题】【较易0.3】【多元复合函数的求导法则】【多元

14、复合函数的求导法则】【试题内容】设,则在极坐标系下,= 。【试题答案及评分标准】0(10分)【】【填空题】【较易0.3】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设,则在极坐标下,= 。【试题答案及评分标准】(10分)【】【填空题】【较易0.3】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】若,则= 。【试题答案及评分标准】(10分)【】【填空题】【较易0.3】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】若,则= 。【试题答案及评分标准】(10分)【】【填空题】【较易0.3】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内

15、容】若,则= 。【试题答案及评分标准】(10分【】【填空题】【较易0.3】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】若,则= 。【试题答案及评分标准】1-sinx(10分)【】【填空题】【较易0.3】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】若,则= 。【试题答案及评分标准】 (10分)【】【填空题】【较易0.3】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】若,则= 。【试题答案及评分标准】1-(10分)【】【填空题】【较易0.3】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设具有二阶连续偏导数,则= 。【试题

16、答案及评分标准】2(10分)【】【填空题】【较易0.3】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设,则= 。【试题答案及评分标准】1(10分)【】【填空题】【较易0.3】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设满足方程,其中是可导函数,是常数,则= 。【试题答案及评分标准】(10分)【】【填空题】【较易0.3】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设,则= 。【试题答案及评分标准】(10分)【】【填空题】【较易0.3】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设,则= 。【试题答案及评分标准】(1

17、0分)【】【填空题】【较易0.3】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设,则= 。【试题答案及评分标准】(10分)【】【填空题】【较易0.3】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设,则= 。【试题答案及评分标准】0(10分)【】【填空题】【较易0.3】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设,则= 。【试题答案及评分标准】0(10分)【】【填空题】【较易0.3】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设,则= 。【试题答案及评分标准】(10分)【】【填空题】【较易0.3】【多元复合函数的求

18、导法则】【多元复合函数的求导法则】【试题内容】设,则= 。【试题答案及评分标准】(10分)【】【填空题】【较易0.3】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设,则= 。【试题答案及评分标准】(10分)【】【填空题】【较易0.3】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设,则= 。【试题答案及评分标准】(10分)【】【填空题】【较易0.3】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设,则= 。【试题答案及评分标准】0(10分)【】【填空题】【较易0.3】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】【试题答案及评分标准】【】【填空题】【较易0.3】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设,则= 。【试题答案及评分标准】1(10分)【】【填空题】【较易0.3】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设,则= 。【试题答案及评分标准】(10分)【】【填空题】【较易0.3】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设,则= 。【试题答案及评分标准】(10分)【】【填空题】【较易0.3】【多元复合函数的求导法则】【多元复合函数的求导法则】【试题内容】设,则= 。【试题答案及评

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论