几种简单证明勾股定理的方法_第1页
几种简单证明勾股定理的方法_第2页
几种简单证明勾股定理的方法_第3页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、图1几种简单证明勾股定理的方法拼图法、定理法据说对社会有重大影响的10大科学发现,勾股定理就是其中之一。 早在4000多年前,中国的大禹曾在治理洪水的过程中利用勾股定理来 测量两地的地势差。迄今为止,关于勾股定理的证明方法已有500余种,各种证法融几何知识与代数知识于一体,完美地体现了数形结合 的魅力。让我们动起手来,拼一拼,想一想,娱乐几种,去感悟数学 的神奇和妙趣吧!一、拼图法证明(举例 12种)拼法一:用四个相同的直角三角形(直角边为a、b,斜边为c)按图2拼法。问题:你能用两种方法表示左图的面积吗?对比两种不同的表示 方法,你发现了什么?2 2 1分析图2: S正方形=(a+b) =

2、c + 4 x舟ab化简可得:a2+b2 = c2拼法二:做8个全等的直角三 角形,设它们的两条直角边长分别为 a、b,斜边长为c,再做三个边长分 别为a、b、c的正方形,把它们像左 图那样拼成两个正方形。从图上可以看到,这两个正方形 的边长都是a + b,所以面积相等.即整理得a2+b2 = c2拼法三:用四个相同的直角三角形(直角边为a、b,斜边为c)按图3拼法。问题:图3是由三国时期的数学家赵爽在为 周 髀算经作注时给出的。在图3中用同样的办法研究,你有什么发现?你能验证a2+b2=c2吗?分析图 3: S 正方形=c2 = (a-b) 2+ 4x 4 ab 化简可得:a2+b2 = c

3、2观察图2、图3与图4的关系,并用一句话表示你的观点。 图4为图2与图3面积之和。拼法四:用两个完全相同的直角三角形(直角边为a、b,斜边为c)按图5拼法。背景:在1876年一个周末的傍晚,在美国首都华盛 顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就 是当时美国俄亥俄州共和党议员伽菲尔德(Garfield ).他发现附近的一个小石凳上,有两个小孩正在谈论着什么.由于 好奇心的驱使,伽菲尔德向两个小孩走去,想搞清楚两个小孩到底在干什么.只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形.于是伽菲尔德便问他们在干什么?只见那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分

4、别为3和4,那么斜边长为多少呢?” 伽菲尔德答到:“是5呀.”小男孩又问道:“如果两条直角边分别为 5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不加 思索地回答到:“那斜边的平方一定等于 5的平方加上7的平方.”小男孩又说道:“先生, 你能说出其中的道理吗? ”伽菲尔德一时语塞,无法解释了,心理很不是滋味。于是伽菲尔德不再散步, 立即回家,潜心探讨小男孩给他留下的难题。他经过反复的思考与演算,终于弄清楚了其中的道理,并给出了简洁的证明方法。问题:图5就是伽菲尔德总统的拼法,你知道他是如何验证的吗?你能用两种方法表示图5的面积吗?伽菲尔德总统是这样分析的:1 2S 梯形 ABCD =

5、21 1 1 2 S 梯形 ABCD =S ABE + Sa ECD+ S AED = 2 ab+ 2 ab+ 2 c 贝V有: 壬(a+b)2= * ab+2 ab+舟 c2化简可得:a2+b2 = c2比较图5与图2,你有什么发现?2之半。拼法五:用四个相同的直角三角形(直角边为a、b,斜边为c),拼成图6,得边长分别为a、b、c正方形。问题:观察图6,你能发现边长分别为 a、b、c的正方形吗?你能 通验证到:a2+b2 = c2吗?分析:其实,图6可以转化为下面两图:图a的面积可表示为:a2+b2+2 x -1 ab图b的面积可表示为:c2+2x 2 ab 比较a、b两图,你发现了什么?

6、2 2 1 2 1a +b +2 x ab = c +2x ab化简可得:a2+b2 = c2ab2 ab2abAabBbaabbahoDbaC拼法六:设直角三角形两直 角边的长分别为a、b,斜边 的长为c.作边长是a+b的正 方形ABCD把正方形ABCD 划分成左图所示的几个部 分,则该正方形ABCD的面 积为(a+ b)2= a2 + b2+ 2ab; 再把正方形ABCD划分成右图所示的几个部分,则正方形ABCD 的面积为(a+ b) 2= c2+4 x 舟 ab由两正方形面积相等得a2 + b2 + 2ab= c2+4 x ab 整理得a2+b2 = c2拼法七:用四个相同的直角三角形

7、(直角边为a、 b,斜边为c)拼成图7。问题:你能把图7转化为图c吗?通过位置变换,你发现了什么?你能发现边长分别为a、b、c的正方形吗?能否验证到:a2+b2 = c2呢?分析:图7的面积可表示为:c2+4 x gab图c的面积可表示为:a2+b2+4 x 1 ab比较图c、图7,你发现了什么?图8a2+b2 = c2呢?你还有其它的拼法吗?化简可得:a2+b2 = c2拼法八、九、十、一、十二 :制作一个五巧 板,如图&方法:先作一个直角三角形,直角边为 a、b, 斜边为c,以斜边为边长向内作正方形, 并把正方形 按图中实线分割为五个部分,这就是一个五巧板。问题:运用五巧板,拼出图

8、 d、图e、图f、图 g,并仔细观察、比较,你发现了什么?能否验证到:图f图e 、定理法证明(举例 3种)利用切割线定理证明在Rt ABC中,设直角边 BC = a, AC = b ,斜边AB =c.如图,以B为圆心a为半径作圆,交 AB及AB的延 长线分别于 D、E,贝U BD = BE = BC = a .因为/ BCA = 90 o,点C在O B上,所以AC是O B的切线.由切割线定 理,得2 2 2 2 2 2AC =AE AD = (AB + BE) (AB BD) =( c+ a) (c a)= c - a从而可得a+b = cBDacAba /利用托勒密定理证明在Rt ABC中,设直角边 BC = a , AC = b ,斜边AB = c(如图).过点A作AD / CB,过点B作BD / CA,则ACBD为矩形,矩形 ACBD内接于一个圆.根据托勒密定理,圆内 接四边形对角线的乘积等于两对边乘积之和,有2 2 2AB DC = AD BC + AC BD 从而可得 a+b = c利用射影定理证明如图,在 Rt ABC中,设直角边 AC、BC的长度 分别为a、b,斜边AB的长为c,过点C作CD丄AB , 垂足是D.根据射影定理,得AC2= ad AB ,BC2= BD BA即 AC2 + BC2= AD AB + BD BA = A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论