版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、人教版九年级上册人教版九年级上册 问题问题: :你知道赵州桥吗你知道赵州桥吗? ? 它的主桥是圆弧形它的主桥是圆弧形, ,它的跨度它的跨度( (弧所对的弦的长弧所对的弦的长) )为为37.4m, 37.4m, 拱高拱高( (弧弧的中点到弦的距离的中点到弦的距离) )为为7.2m7.2m,你能求出赵州桥主你能求出赵州桥主桥拱的半径吗?桥拱的半径吗? 赵州桥主桥拱的半径是多少?赵州桥主桥拱的半径是多少? 由此你能得到圆的什么特性?由此你能得到圆的什么特性? 可以发现:可以发现:圆是轴对称图形。任何圆是轴对称图形。任何一条直径所在直线都是它的对称轴一条直径所在直线都是它的对称轴 不借助任何工具,你能
2、找到圆形不借助任何工具,你能找到圆形纸片的圆心吗纸片的圆心吗? ? 如图如图,AB,AB是是O O的一条弦的一条弦, , 直径直径CDAB, CDAB, 垂足为垂足为E.E.你能发现图中有那些相等的线段你能发现图中有那些相等的线段和弧和弧? ? 为什么为什么? ?OABCDE线段线段: AE=BE: AE=BE弧弧: AC=BC, AD=BD: AC=BC, AD=BD垂径定理垂径定理垂直于弦垂直于弦的的直径直径平分弦平分弦, ,并且平分弦所对的两条弧并且平分弦所对的两条弧CDABCDAB CD CD是直径,是直径, AE=BE, AE=BE, AC =BC, AC =BC,AD =BD.AD
3、 =BD.OABCDEEDCOAB下列图形是否具备垂径定理的条件?下列图形是否具备垂径定理的条件?ECOABDOABc是是不是不是是是不是不是OEDCABEDCOABOBCADDOBCAOBAC垂径定理的几个基本图形:垂径定理的几个基本图形:CDCD过圆心过圆心CDABCDAB于于E EAE=BEAC=BCAD=BD1.已知已知P为为 O内一点,且内一点,且OP2cm,如果,如果 O的半的半径是径是3cm,那么过那么过P点的点的最短的弦最短的弦等于(等于( ) 若若AB=8,半径为半径为5,则,则OP的取值范围是的取值范围是 .PO2.过过 O内一点内一点M的最长弦长为的最长弦长为4厘米,最短
4、弦长厘米,最短弦长为为2厘米,则厘米,则OM的长是多少?的长是多少?OM1 1、如图,、如图,ABAB是是O O的直径,的直径,CDCD为弦,为弦,CDABCDAB于于E E,则下列结论中则下列结论中不成立不成立的是(的是( )A、COE=DOEOE=DOEB、CE=DECE=DEC、OE=AEOE=AED、BD=BCBD=BC OABECD2 2、如图,、如图,OEABOEAB于于E E,若,若O O的半径为的半径为10cm,OE=6cm,10cm,OE=6cm,则则AB=AB= cm,cm,延长延长OEOE交交O O 于点于点G G和和F F,求,求EFEF和和EGEG。OABE3 3、如
5、图,在、如图,在O中,弦中,弦ABAB的长为的长为8cm8cm,圆,圆心心O到到AB的距离为的距离为3cm3cm,求,求O的半径,的半径,延延长长OEOE交交O O 于点于点G G和和F F,求,求EFEF和和EGEG。OABE4 4、如图,、如图,CDCD是是O的直径,弦的直径,弦ABCDABCD于于E E,CE=1CE=1,AB=10AB=10,求直径,求直径CDCD和和EDED的长。的长。OABECD反思:反思:在在 O中,若中,若 O的半径的半径r、圆心到弦的距离、圆心到弦的距离d、弦长、弦长a、弓形高弓形高h中,任意知道两个量,可根据中,任意知道两个量,可根据定理求出其它定理求出其它
6、两个量:两个量:CDBAO 运用垂径定理可以解决许多生产、生活实际问运用垂径定理可以解决许多生产、生活实际问题,其中弓形是最常见的图形(如图),则弦题,其中弓形是最常见的图形(如图),则弦a a,弦,弦心距心距d d,弓形高,弓形高h h,半径,半径r r之间有以下关系:之间有以下关系:ABC DO2222adr d+h=r hrd2a 你能利用垂径定理解决求你能利用垂径定理解决求赵州桥拱半径的问题吗赵州桥拱半径的问题吗? ?垂径定理的应用垂径定理的应用37.4m7.2mABOCD关于弦的问题,常关于弦的问题,常常需要常需要过圆心作弦过圆心作弦的垂线段的垂线段,这是一,这是一条非常重要的条非常
7、重要的辅助辅助线线。圆心到弦的距离、圆心到弦的距离、半径、弦半径、弦构成构成直角直角三角形三角形,便将问题,便将问题转化为直角三角形转化为直角三角形的问题。的问题。ABOCD解:解:如图,用如图,用ABAB表示主桥拱,设表示主桥拱,设ABAB所在的圆的圆心为所在的圆的圆心为O O,半径为,半径为r.r.经过圆心经过圆心O O作弦作弦ABAB的垂线的垂线OCOC垂足为垂足为D D,与,与ABAB交于点交于点C C,则,则D D是是ABAB的中的中点,点,C C是是ABAB的中点,的中点,CDCD就是拱高就是拱高. . AB=37.4m AB=37.4m,CD=7.2mCD=7.2m AD=1/2
8、 AB=18.7m AD=1/2 AB=18.7m,OD=OC-CD=r-7.2OD=OC-CD=r-7.2 222ADODOA2222 . 77 .18rr解得解得r=27.9r=27.9(m m)即即主桥拱半径约为主桥拱半径约为27.9m.27.9m.垂径定理的应用垂径定理的应用练习练习2 2、如图,一条公路的转变处是一段圆弧、如图,一条公路的转变处是一段圆弧( (即图中弧即图中弧CD,CD,点点O O是弧是弧CDCD的圆心的圆心),),其中其中CD=600m,ECD=600m,E为弧为弧CDCD上的一点上的一点, ,且且OECDOECD垂足为垂足为F,EF=90m.F,EF=90m.求这
9、段弯路的半径求这段弯路的半径. .OCDEF船能过拱桥吗船能过拱桥吗? ?3 3、如图如图, ,某地有一圆弧形拱桥某地有一圆弧形拱桥, ,桥下水面宽为桥下水面宽为7.27.2米米, ,拱顶高出水面拱顶高出水面2.42.4米米. .现有一艘宽现有一艘宽3 3米、船舱米、船舱顶部为长方形并高出水面顶部为长方形并高出水面2 2米的货船要经过这米的货船要经过这里里, ,此货船能顺利通过这座拱桥吗?此货船能顺利通过这座拱桥吗?船能过拱桥吗船能过拱桥吗解解: :如图如图, ,用用 表示桥拱表示桥拱, , 所在圆的圆心为所在圆的圆心为O,O,半径为半径为RmRm, ,经过圆心经过圆心O O作弦作弦ABAB的
10、垂线的垂线OD,DOD,D为垂足为垂足, ,与与 相交于点相交于点C.C.根根据垂径定理据垂径定理,D,D是是ABAB的中点的中点,C,C是是 的中点的中点,CD,CD就是拱高就是拱高. .由题设得由题设得ABABABAB. 5 . 121, 4 . 2, 2 . 7MNHNCDABABAD21, 6 . 32 . 721DCOCOD. 4 . 2 R在在RtOAD中,由勾股定理,得中,由勾股定理,得,222ODADOA.)4 . 2(6 . 3222RR即解得解得 R3.9(m). 在在RtONH中,由勾股定理,得中,由勾股定理,得,22HNONOH. 6 . 35 . 19 . 322OH
11、即. 21 . 25 . 16 . 3DH此货船能顺利通过这座拱桥此货船能顺利通过这座拱桥.例例2如图,在如图,在 O中,中,AB、AC为互相垂直且相等为互相垂直且相等的两条弦,的两条弦,ODAB于于D,OEAC于于E,(,(1)求证:)求证:四边形四边形ADOE是正方形。(是正方形。(2)若)若r=5,求,求AB长长DOABCE 练习练习1.如图,如图,CD为圆为圆O的直径,弦的直径,弦AB交交CD于于E, CEB=30,DE=9,CE=3,求弦,求弦AB的长。的长。EDOCAB2.2.如图,如图,ABAB是是O O的弦,的弦,OCA=30OCA=300 0,OB=5cmOB=5cm,OC=
12、8cmOC=8cm,则,则AB=AB= ;OABC30308 85 5垂径定理推论垂径定理推论 平分弦平分弦(不是直径)(不是直径)的直径垂的直径垂直于弦直于弦, ,并且平分弦所对的两条弧。并且平分弦所对的两条弧。 CDAB,CDAB, CD CD是直径,是直径, AE=BE AE=BE AC =BC, AC =BC,AD =BD.AD =BD.OABCDE(1 1)如何证明?)如何证明?OABCDE已知:已知:如图,如图,CDCD是是O O的直径,的直径,ABAB为弦为弦,且,且AE=BE.AE=BE.求证:求证:CDABCDAB,且,且AD=BD,AD=BD, AC =BC AC =BC(
13、2 2)“不是直径不是直径”这个条件能去掉吗?如这个条件能去掉吗?如果不能,请举出反例。果不能,请举出反例。 平分弦平分弦(不是直径)(不是直径)的直径垂直于的直径垂直于弦弦, ,并且平分弦所对的两条弧。并且平分弦所对的两条弧。OABCDAM=BM,n由由 CD是是直径直径 CDAB可推得可推得AD=BD. AC=BC,CDAB,n由由 CD是是直径直径 AM=BM AC=BC,AD=BD.可推得可推得垂径定理:垂径定理:推论:推论:试一试试一试1.判断:判断:( )(1)垂直于弦的直线平分这条弦垂直于弦的直线平分这条弦, 并且平分并且平分 弦所对的两条弧弦所对的两条弧.( )(2)平分弦所对
14、的一条弧的直径一定平分平分弦所对的一条弧的直径一定平分 这条弦所对的另一条弧这条弦所对的另一条弧.( )(3)经过弦的中点的直径一定垂直于弦经过弦的中点的直径一定垂直于弦.2 2、如图,点、如图,点A A、B B是是O O上两点,上两点,AB=8,AB=8,点点P P是是O O上的动点(上的动点(P P与与A A、B B不重合)不重合), ,连接连接APAP、BP,BP,过点过点O O分别作分别作OEAPOEAP于于E,OFBPE,OFBP于于F,F,EFEF= = 。?O?A?B?P?E?F43 在以在以O为圆心的两个同心为圆心的两个同心圆中,大圆的弦圆中,大圆的弦AB交小圆于交小圆于C,D
15、两点求证:两点求证:ACBDACDBO4 已知:已知: O中弦中弦ABCD 求证:求证:ACBDCDABOOABC 有关圆的双解问题有关圆的双解问题1、已知、已知A、B、C是是 O上三点,且上三点,且AB=AC,圆,圆心心O到到BC的距离为的距离为3厘米,圆的半径为厘米,圆的半径为5厘米,求厘米,求AB长。长。D试一试试一试OABCOABOAB2、已知、已知 O的半径为的半径为5厘米,弦厘米,弦AB的长为的长为8厘米,求此弦的中点到这条弦所对的弧的中厘米,求此弦的中点到这条弦所对的弧的中点的距离。点的距离。3 已知:已知: O中弦中弦ABCD若若AB=16,CD12,半径为,半径为10,求弦求
16、弦AB、弦、弦CD之间的距离。之间的距离。CDABO 回顾与思考回顾与思考这节课你有什么收获?这节课你有什么收获?还有哪些疑问?还有哪些疑问?1.1.过过o o内一点内一点M M的最长的弦长为的最长的弦长为1010, ,最短弦长为最短弦长为8 8, ,那么那么o o的半径是(的半径是( )2.2.已知已知o o的弦的弦AB=6AB=6, ,直径直径CD=10CD=10, ,且且ABCD,ABCD,那么那么C C到到ABAB的的距离等于(距离等于( ) 3.3.已知已知O O的弦的弦AB=4AB=4, ,圆心圆心O O到到ABAB的中点的中点C C的距离为的距离为1 1, ,那么那么O O的半径为(的半径为( )4 4、在半径为、在半径为25cm25cm的的O O中,弦中,弦AB=40cmAB=40cm,则此弦和弦所对的弧,则此弦和弦所对的弧的中点的距离是的中点的距离是 . . 5 5、 O O的直径的直径AB=20cm, BAC=30AB=20cm, BAC=30则弦则弦AC=AC= . .6.6.在在O O中弦中弦ABAC,OMAB,ONAC,ABAC,OMAB,ONAC,垂足分别为垂足分别为M,M,N,N,且且OM=2,0N=3,OM=2,0N=3,则则AB= AB= AC= AC= OA= OA= 7 7、如图,、如图,O O中中CDCD是弦,是弦,ABAB是直径,是直径,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年外卖订餐服务标准化协议版B版
- 2024年定制安防监控系统施工项目协议协议版B版
- 2024厂房拆除合同范本
- 2024专升本教育领域招标策略及协议风险防控版B版
- 2024年度劳动合同及工资支付借条2篇
- 2024年企业云计算服务协议
- 2024年定制化营销活动合同版B版
- 2024年北京地区汽车租赁协议标准格式样本版
- 2024双方协议离婚财产分割
- 2024年专业三方担保机构借款服务协议模板
- 云南省消防条例(2021版)
- 部编版一年级上册语文(比尾巴)课件
- 2023高级机械检查工技能理论考试题库(浓缩500题)
- 应用不变量化简二次曲线的方程
- 泛函分析考试题集与答案
- 部编版六年级语文上册集体备课-教案
- 中国古典文献学(全套)
- 著名建筑案例分析
- UI设计行业报告
- 校园反恐防暴应急预案
- 房屋加固施工组织设计方案
评论
0/150
提交评论