下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第六章 平行四边形1 .平行四边形的性质(一)知识与技能目标:学生在小学已经学习过平行四边形,对平行四边形有直观的感知和认识。过程与方法目标:在掌握平行线和相交线有关几何事实的过程中,学生已经初步经历过观察、操作等活动过程,获得了一定的探索图形性质的活动经验;同时,在学习数学的过程中也经历了很多合作过程,具有了一定的学习经验,具备了一定的合作和交流能力。情感态度与价值观目标:1 经历探索平行四边形有关概念和性质的过程, 在活动中发展学生的探究意识和合作交流的习惯;2 探索并掌握平行四边形的性质,并能简单应用;教学重点:平行四边形性质的探索。教学难点:平行四边形性质的理解。教学方法:探索归纳法教
2、学过程第一环节:实践探索,直观感知1 小组活动一内容 :问题 1:同学们拿出准备好的剪刀、彩纸或白纸一张。将一张纸对折,剪下两张叠放的三角形纸片,将它们相等的一边重合,得到一个四边形。(1)你拼出了怎样的四边形?与同桌交流一下;(2)给出小明拼出的四边形,它们的对边有怎样的位置关系?说说你的理由,请用简捷的语言刻画这个图形的特征。目的:通过学生动手实践,引出平行四边形的概念:两组对边分别平行的四边形,叫做平行四边形;平行四边形的相邻的两个顶点连成的一段叫做它的对角线。教师进一步强调:平行四边形定义中的两个条件: 四边形,两边分别分别平行即 AD / BC且AB / BC ;平行四边形的表示“U
3、72 .小组活动二内容:生活中常见到平行四边形的实例有什么呢?你能举例说明吗?目的:加强知识的直观体验,使学生感受数学来源于生活,数学图形和生活是紧密相联系的。效果:通过动手实践、探索、感知,学生进一步探索了平行四边形的概念,明确了平行四边形的本质特征。第二环节探索归纳、合作交流小组活动三:内容:平行四边形是中心对称图形吗?如果是,你能找出他的对称中心并验证你的结论吗?你还发现平行四边形的那些性质呢 ?活动目的:这个探索活动与第一环节的探索活动有所不同,是从整体的角度研究平行四边形中心对称性的特征朋确了两条对角线的交点就是其对称中心,感知平行四边形的对边,对角的性质:平行四边形的对边相等,平行
4、四边形的对角相等等。活动注意事项:引导学生动手操作、复制、旋转、观察、分析,在剪切平行四边形纸片时,要保证上下纸片的大小、形状完全相同。第三环节 推理论证、感悟升华1 .实践探索内容(1)通过剪纸,拼纸片,及旋转,可以观察到平行四边形的对应边、对应角分别相等。(2)可以通过推理来证明这个结论。例:如图6-2 (1),四边形ABCD是平行四边形求证:AB=CD,BC=DA.证明:如图6-2(2),连接AC.四边形ABCD是平行四边形AD / BC , AB / CD/ 1 = 7 2, / 3=/4AABC 和4CDA 中Z 2=7 1AC=CA/3=/4AABC ACDA (ASA)AB=DC
5、 , AD=CB学生证明:平行四边形的对角相等2 .活动目的:学生通过说理,由直观感受上升到理性分析,在操作层面感知的基础上提升,并了解图形具有 的数学本质。3 .活动效果:“实践一认识一再实践一认识”是数学学习的重要方法,说理论证平行四边形的性质时学生能 很好地接受,由此看出这一年龄段的学习完全可以由感性的认知上升到理性的证明。第四环节应用巩固深化提高1 .活动内容:(1)练一练:已知:如图6-3,在口ABCD中,E, F是对角线 AC上的两点,且 AE=CF .求证:BE=DF .证明:二.四边形ABCD是平行四边形AB = CDAB / CD/ BAE= / DCF又AE=CF BAEA
6、 DCFBE=DF议一议:如果已知平行四边形的一个内角度数,能确定其它三个内角的度数吗?A (学生思考、议论)B总结归纳:可以确定其它三个内角的度数。由平行四边形对边分边平行得到邻角互补;又由于平行四边形对角相等,由此已知平行四边形的一个内角的度数,可以确定其它三个角度数。2 .活动目的:通过练一练,议一议,学生进一步理解平行四边形的性质,并进行简单合情推理,体现性质的应 用,同时从不同角度平移、旋转等再一次认识平行四边形的本质特征。3 .活动效果:学生经过通过此环节的思、议、练进一步理解和应用掌握了平行四边形的性质特征,是对探索 归纳:比较的综合提高。第五环节评价反思概括总结1 .活动内容1
7、师生相互交流、反思、总结。(1)经历了对平行四边形的特征探索,你有什么感受和收获?给自己一个评价。(2)在与同伴合作交流中练表现,优秀方面有哪些?你看到同伴哪些优点?(3)本节学习到了什么?(知识上、方法上)2 .活动目的:鼓励学生交流课堂实践、观察探索的经历、感受和收获;鼓励学生勇于进行自我评价,进一步 培养学生反思意识及总结能力。3 .活动效果:学生踊跃谈感受和收获,本节学习了平行四边形的概念,探索了平行四边形的性质:平行四边 形对边相等,平行四边形对角相等;平行四边形对角线互相平分。2考一考:1. OABCD 中,/ B=60° ,则/ A= C C= / D=。2. OABC
8、D 中,/ A 比/ B 大 20°,则/ C=。3. 0BCD 中,AB=3 , BC=5,贝U AD=CD=。4. ZZ7ABCD中,周长为 40cm, ABC周长为25,则对角线 AC= () cm。A . 5cm B . 15cm C. 6cm D. 16cm参考答案1 . 120°120°60°2. 100°3. 5cm 3cm4. A3布置作业M T?P><f /(1)课本习题 6.11, 2, 3, 4.A 白 B(2)想一想(请同学们思考探究)如图 OABCD中,平行于对角线 BD的直线MN分别交CD, CB的延长线
9、于 M, N,交AD 于P,交AB于Q,你能说明 MQ=NP吗?说说你的理由。4师生共勉,把一件平凡的事做好,就是又平凡,把一件简单事情做好就是不简单。5. 活动目的:1 .通过作业的巩固对平行四边形性质理解并学会应用。2 .想一想,旨在的同学们探究意识延伸。教学反思1 .本节教材直观感知活动较多,由学生的心理及年龄特点决定,学生有一定的逻辑思考能力 及说理能力,因此从理性角度分析平行四边形的性质特点是非常需要的。2 .学生在“议一议,练一练”环节中,要引导有条理的叙述及数学语言的表达。. 平行四边形的性质(二)知识与技能目标:学生经历了对平行四边形性质探索的过程,掌握了平行四边形对边、对角的
10、性质特征,并能简单应用。过程与方法目标:对平行四边形具有了一定的观察分析的能力和合情推理能力 ,具备了自行得出平行四边形对角线的性质的基础。情感态度与价值观目标:1进一步掌握平行四边形对角线互相平分的性质, 学会应用平行四边形的性质;2在应用中进一步发展学生合情推理能力,增强逻辑推理能力,掌握说理的基本方法。3通过解决问题,探究并归纳: “平行线间的距离处处相等”这一性质。教学重点:平行四边形性质的应用教学难点:发展合情推理及逻辑推理能力教学方法:启发诱导法,探索分析法教学过程第一环节 回顾思考,引入新课活动内容:以问题串形式回顾平行四边形的概念和平行四这形的性质。温故知新。1 平行四边形都有
11、哪些性质?2 回顾思考选择题(1)平行四边形 ABCD中,/ A比/ B大20° ,则/ C的度数为()A 60° B 80°C 100° D 120°( 2)平行四边形ABCD 的周长为 40cm ,三角形 ABC 的周长为 25cm, 则对角线 AC 长为( )A . 5cm B. 15cm C. 6cm D . 16cm(3)平行四边形 ABCD中,对角线AC, BD交于O,则全等三角形的对数有 参考答案:1 . C.2. A,3. 4 对.活动目的:1.通过(1) (3)的问题串,反馈学生对平行四边形的对边、对角性质的理解和简单应用,同
12、时 总结结论:平行四边形对角线互相平分。活动效果:能真实客观反馈学生对上节“平行四边形性质”的情况,并有针对性的在本节补救强化。第二环节探索发现,灵活运用活动内容:探索问题1在上节课的做一做中,我们发现平行四边形除了边、角有特殊的关系以外,对角线还有怎样的特殊关系呢?A.(学生思考、交流)得出:平行四边形的对角线互相平分。B.请尝试证明这一结论已知:如图6-4,平行四边形 ABCD的对角线AC、BD相交于点O.求证:OA=OC,OB=OD.证明:二.四边形ABCD是平行四边形AB=CD AB/DC/ BAO= / DCO / ABO= / CDO AAOB ACOD OA=OC,OB=OD.你
13、还有其他的证明方法吗,与同伴交流。活动目的:通过对上节课做一做的回顾,得出平行四边形对角线互相平分的性质,再通过严格的说理证明,深化对知识的理解。活动效果及注意: 因为有上节课的基础,学生对于定理的证明已具备一定的基础,但是在证明完定理后应该给学生强调:定理的证明只是让学生进一步理解定理,而在定理的运用时则没必要这么麻烦,直接由平行四 边形可得出其对角线互相平分。二、练一练活动内容探索问题2例1.如图6-5,在平行四边形 ABCD中,点。是对角线AC、BD的交点,过点O的直线分别与 AD、 BC交于点E、F.求证:OE=OF.A.议论交流B.师生共析归纳解:.四边形ABCD是平行四边形 AD=
14、CB AD/BC OA=OC / DAC= / ACB 又. / AOE= ZCOF .AOEACOFOE=OF 探索问题2 如图6-6,平行四边形 ABCD的对角线 AC、BD相交于点 O, /ADB=90 0,OA=6,0B=3.求AD和AC 的长度.解:二.四边形ABCD是平行四边形OA=OC=6 OB=OD=3AC=12 又. / ADB=90 0在RtAADO中,根据勾股定理得OA2=0D2+AD2AD=3 V3 活动目的: 通过练一练的两个问题的训练,进一步巩固平行四边形的性质,并学会应用。 第三环节观察分析,理性升华 例2 已知,如图,在平行四边形 ABCD中,平行于对角线 AC
15、的直线MN分别交DA , DC的延长线于M, N,交BA, BC于点P,点B,你能说明MQ=NP吗?A.学生独立观察分析B.交流探索C.师生共析小结解:.四边形ABCD是平行四边形 .AD/BC , AB/CD即 AM/CQ又 AC/MN即 AC/MQ由平行四边形定义得四边形MQCA是平行四边形MQ=AC同理 NP=ACMQ=NP小结:利用平行四边形可以证明两线段相等第四环节巩固反馈,总结提高活动内容:一、通过练习,进一步应用平行四边形性质,达到掌握的程度。1 .在平行四边形 ABCD中,Z A=150 ° , AB=8cm , BC=10cm ,求平行四边形 ABCD的面积。A.学
16、生议论B.师生共评解:过A作AE,BC交BC于E,四边形ABCD是平行四边形AD/BC ./ BAD+ / B =180°. / BAD =150 °/ B =30 °在 RtAABE 中,/ B =30°AE =1/2AB=4,平行四边形 ABCD的面积=4X 10=40cm2活动目的:由学生直观操作得出的结论与简单推理进行有机结合,是对探索活动的自然延续和必要发,本 环节让学生应用的结论进行说理和推理实理理性升华,培养语言表达能力。二、计算题1 .课本随堂练习2 .平行四边形 ABCD的两条对角线相交于 O, OA, OB, AB的长度分别为3cm、
17、4cm、5cm,求其 它各边以及两条对角线的长度。解:四边形ABCD是平行四边形AB=CD , AD=BCOA=OC , OB=OD 又 OA=3cm , OB=4cm , AB=5cmAC=6cm BD=8cm CD=5cm ,AOB 中,32+42=52,即 AO 2+BO 2=AB 2/ AOB =90 °AC ±BD RtAAOD 中,OA2+OD2=AD2AD=5cm , BC=5cm, 答:这个平行四边形的其它各边都是5cm,两条对角线长分别为 6cm和8cm。活动效果:通过一组训练,达到了学生对平行四边形性质的掌握。 第五环节评价反思,目标回顾活动内容:1 .
18、本节课你有哪些收获?你能将平行四边形的性质进行归纳吗?2 .本节通过实例,你如何理解"两条平行线间距离”?3 .利用平行四边形可以解决哪些问题? 4 .你能给自己和同伴本节课一个评价吗?5.布置作业:1、习题6.2 1, 2, 3, 42、2、完成学考精练对应练习教学反,思、:把一件平凡的事情做好,就不平凡,把一件简单的事情做好就不简单。. 平行四边形的判定(一)知识技能目标1 会证明平行四边形的 2 种判定方法2理解平行四边形的这两种判定方法,并学会简单运用过程与方法目标2 经历平行四边行判别条件的探索过程,在有关活动中发展学生的合情推理意识3 在运用平行四边形的判定方法解决问题的
19、过程中, 进一步培养和发展学生的逻辑思维能力和 推理论证的表达能力情感态度价值观目标通过平行四边形判别条件的探索,培养学生面对挑战,勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的体验,激发学生的学习热情教学重点:平行四边形判定方法的探究、运用教学难点:对平行四边形判定方法的探究以及平行四边形的性质和判定的综合运用教学方法:师生共同讨论法.教学过程第一环节 复习引入:问题 1 (多媒体展示问题)1 平行四边形的定义是什么?它有什么作用?2平行四边形还有哪些性质?目的:教师提出问题 1, 2 ,由学生独立思考,并口答得出定义正反两方面的作用,总结出平行四边形的其他几条性质在此活动中,教师应重
20、点关注:( 1 )学生参与思考问题的积极性;( 2 )学生能否准确、全面地回答出平行四边形的全部性质;( 3 )学生能否由平行四边形的性质,猜测出平行四边形的判断方法第二环节定理探索活动1:工具:两对长度分别相等的笔.动手:能否在平面内用这四根笔摆成一个平行四边形?思考1.1:你能说明你所摆出的四边形是平行四边形吗?已知:如图 6-8 (1),在四边形 ABCD中,AB=CD,BC=AD求证:四边形 ABCD是平行四边形.证明:如图6-8 (2)连接BD.在 ABD和 CDB中 AB=CD AD=CB BD=DB .ABD ACDB1 = /2/3=/4AB / CD AD / CB四边形AB
21、CD是平行四边形思考1.2:以上活动事实,能用文字语言表达吗?得出:两组对边分别相等的四边形是平行四边形。目的:学生以小组为单位,利用课前准备好的学具动手操作、观察,完成探究活动1,共同得到:(1)只有将两两相等的木条分别作为四边形的两组对边才能得到平行四边形.(2)通过观察、实验、猜想到:两组对边分别相等的四边形是平行四边形.通过学生的互相交流,口述其推理论证的过程.根据学生的认知水平,教师应估计到学生可能 会在推理论证时遇到困难,所以应加以适当引导.在此活动中,教师应重点关注:(1)学生在拼四边形时,能否将相等两木条作为四边形的对边;(2)转动四边形,改变它的形状的过程中, 能否观察得到在
22、此过程中它始终是一个平行四边形;(3)学生能否通过独立思考、小组合作得出正确的证明思路.活动2工具:两根长度相等的笔,两条平行线(可利用横格线).动手:请利用两根长度相等的笔能摆出以笔顶端为顶点的平行四边形吗?利用两根长度相等的笔和两条平行线,能摆出以笔顶端为顶点的平行四边形吗思考2.1:你能说明你所摆出的四边形是平行四边形吗?如图 6-9 (1),在四边形 ABCM, AB/ CD, 且 AB=CD.求证:四边形ABC虚平行四边形.证明:如图6-9 (2),连接AC. AB/ CD/ BAC= / ACD又 AB=CD AC=CAABAC DCABC=AD四边形ABCD是平行四边形思考2.2
23、:以上活动事实,能用文字语言表达吗?得出:一组对边平行且相等的四边形是平行四边形目的:得出平行四边形的判定:一组对边平行且相等的四边形是平行四边形注意事项在此活动中,教师应重点关注:(1)学生实验操作的准确性;(2)学生能否运用不同的方法从理论上证明他们的猜想、发现;(3)学生使用几何语言的规范性和严谨性.第三环节巩固练习(一)例1如图6-10,在平行四边形 ABC邛,E、F分别是AD和BC的 中点.求证:四边形BFD比平行四边形.证明:四边形 ABCD是平行四边形AD=CB AD/BC又& F分别是AD和BC的中点ED=1|2AD BF=1|2BCDE=BF又 ED / BF四边形B
24、FDE是平行四边形(二)随堂练习1、2、3:第四环节回顾小结:师生共同小结,主要围绕下列几个问题:(1)判定一个四边形是平行四边形的方法有哪几种?这些方法是从什么角度去考虑的?(2)我们是通过什么方法得出平行四边形的这几种判定方法的,这样的探索过程对你有什么启发?(3)类比、观察、拼图、实验等都是学习数学、发现结论的常用方法.目的:鼓励学生畅所欲言, 总结对本节课的收获和体会;自主建构知识体系, 锻炼学生的口头表达能 力,培养学生的自信心;进一步加深对所学知识的理解和记忆。第五环节布置作业:1、课本习题6.3第1题、第2题、第3题2、完成学考精练对应练习教学反思本节课在引入的环节上,采用复习引
25、入的方式.首先复习了平行四边形的定义和性质,唤起 学生对已有知识的回忆,让学生初步感受平行四边形的性质与判定的区别与联系,为平行四边形的 性质和判定的综合运用作了铺垫.知识的真正获得不是靠知者的“告诉”,而是在于学习者的亲身体验所得,本节课判定方法的 得出都非常重视知识的发生、形成过程,让学生亲历了类比、观察、实验、猜想、验证、推理的整 个过程,培养学生的探究能力,发展学生的合情推理能力.学生把所学知识灵活地加以运用,有效 地激发了学生的学习兴趣,提高了学习效率.数学的学习要重视学习方法的指导.本节课通过由浅入深的练习和灵活的变式,引导学生善 于抓住图形的基本特征和题目的内在联系,达到触类旁通
26、的效果. 平行四边形的判定(二)知识技能目标1 会证明对角线互相平分的四边形是平行四边形这一判定定理2理解对角线互相平分的四边形是平行四边形这一判定定理,并学会简单运用过程与方法目标2 经历平行四边行判别条件的探索过程,在探究活动中发展学生的合情推理意识3 在运用平行四边形的判定方法解决问题的过程中, 进一步培养和发展学生的逻辑思维能力和推理论证的几何表达能力情感态度价值观目标通过平行四边形判别条件的探索,培养学生面对挑战,勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的体验,激发学生的学习热情教学重点:平行四边形判定方法的探究、运用教学难点:对平行四边形判定方法的探究以及平行四边形的性质
27、和判定的综合运用教学方法:师生共同讨论法.教学过程第一环节 复习引入:问题 1 (多媒体展示问题)1 平行四边形的定义是什么?它有什么作用?2判定四边形是平行四边形的方法有哪些?1 1 )两组对边分别平行的四边形是平行四边形.2 2 )一组对边平行且相等的四边形是平行四边形 .3 3 )两组对边分别相等的四边形是平行四边形.目的:4 教师提出问题 1, 2 ,由学生独立思考,并口答得出定义正反两方面的作用,总结出判定四边形是平行四边形的几个条件.5 .对比平行四边形的性质,猜测平行四边形判断的其他方法。第二环节探索活动活动:工具:两根不同长度的细木条.动手:能否合理摆放这两根细木条,使得连接四
28、个顶点后成为平行四边形?思考2.1 :你能说明你得到的四边形是平行四边形吗?思考2.2 :以上活动事实,能用文字语言表达吗?(得出:对角线互相平分的四边形是平行四边形.)已知:如图6-12,四边形ABCD勺对角线 AC BD相交于点 O,并且OA=OC,OB=OD.求证:四边形ABCD1平行四边形.证明: OA=OC,OB=OD且 / AOBh COD. .AO望 CODAB=CD同理可得:BC=AD四边形ABC皿平行四边形目的:得出平行四边形的判定定理:对角线互相平分的四边形是平行四边形注意事项在此活动中,教师应重点关注:(1)学生实验操作的准确性;(2)学生能否运用不同的方法从理论上证明他
29、们的猜想、发现;(3)学生使用几何语言的规范性和严谨性.第三环节巩固练习例1 .已知:如图6-13(1),在平行四边形 ABCD中,点E、F在对角线AC上,并且AE=CF求证:四边形BFD弱平行四边形吗?2 >1图 6-13证明:如图6-13(2),连接BD.四边形ABC虚平行四边形OA=OC OB=OD又 AE=CFOA-AE=OC-CFOE=OF四边形BFD既平行四边形变式练习:对于上述仞题,若 E, F继续移动至 OA OC的延长线上,仍使 AE=CF(如图),则结论还成立吗?随堂练习1 .判断下列说法是否正确(1) 一组对边平行且另一组对边相等的四边形是平行四边形()(2)两组对
30、角都相等的四边形是平行四边形()(3) 一组对边平行且一组对角相等的四边形是平行四边形()(4) 一组对边平行,一组邻角互补的四边形是平行四边形(2 .如图:AD是A ABC的边BC边上的中线.(1)画图:延长AD到点E,使DE=AD连接BE,CE;(2)判断四边形ABEC的形状,并说明理由.3 .想一想:如图有一块平行四边形玻璃镜片,不小心打掉了一块,但是有两条边是完好的.同学们想想看,有没有办法把原来的平行四边形重新画出来?(让学生思考讨论, 再各自画图,画好后互相交流画法, 教师巡回检查.对个别学生稍加点拨,最后请学生回答画图方法)<学生想到的画法有:兄/(1)分别过A, C作BG
31、 BA的平行线,两平行线相交于 D;(2)分别以A, C为圆心,以BC, BA的长为半径画弧,两弧相交于D,连接AD, CD(3)这一种方法学生不易想到,即为平行四边形对角线的特性,引导学生得出连线AG取AC的中点O,再连接BO并延长BO至ij D,使BO=DQ连接AQ CD.目的:通过练习进行强化和巩固,加深学生对定理的理解,从而达到灵活的运用.第四环节回顾小结:师生共同小结,主要围绕下列几个问题:(1)判定一个四边形是平行四边形的方法有哪几种?(2)我们是通过什么方法得出平行四边形的这几种判定方法的,这样的探索过程对你有什么启发?(3)平行四边形判定的应用目的:鼓励学生畅所欲言, 总结对本
32、节课的收获和体会;自主建构知识体系, 锻炼学生的口头表达能 力,培养学生的自信心;进一步加深对所学知识的理解和记忆。第五环节布置作业:1、随堂练习第1题 课本习题6.4的第1题,第2题2、完成学考精练对应练习教学反思本节课的设计通过探究活动的开展探求平行四边形的判定方法,通过对判定方法的进一步理解,典型例题的分析,精选的随堂练习,学生一定能够掌握平行四边形的判定方法及应用判定方法解决 实际生活的问题.2 .平行四边形的判定(三)知识技能目标1 .运用类比的方法,通过学生的合作探究,得出平行四边形的判定方法.2 .理解对角线互相平分的四边形是平行四边形这一判定定理,并学会简单运用.过程与方法目标
33、经历平行四边行判别条件的探索过程,在探究活动中发展学生的合情推理意识.情感态度与价值观目标:在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展学生的逻辑思维能力和推 理论证的几何表达能力.教学重点:平行四边形判定方法的综合运用.教学难点:平行四边形的性质和判定的综合运用.教学过程第一环节复习引入:问题1 (多媒体展示问题)1 .平行四边形的定义是什么?它有什么作用?2 .平行四边形有那些性质 ?3 .判定四边形是平行四边形的方法有哪些?目的:判定四边形是平行四边形的几个条件.教师提出问题,由学生独立思考,并口答得出定义正反两方面的作用 .总结出平行四边形的性质和在笔直的铁轨上,夹在铁
34、轨之间的平行枕木是否一样长问题2 (多媒体展示问题)你能说明理由吗?与同伴交流.目的:从实际的生活出发,让学生感受数学来源于生活又服务于生活将生活中的问题抽象成数学问题b作垂线,交直线 b于点C,点D,如图,已知,直线a/b,过直线a上任两点A, B分别向直线(1)线段AC, BD所在直线有什么样的位置关系?(2)比较线段AC, BD的长。A.(学生思考、交流)B.(师生归纳)解(1)由 AC Lb, BD ±b,得 AC/BD 。(2) a/b, AC/BD , 一四边形 ACDB是平行四边形fAC=BD归纳:若两条直线平行,则其中一条直线上任意两点到另一条直线的距离相等,这个距离
35、称为平行线间的距离。即平行线间的距离相等。议一议:夹在平行线之间的平行线段一定相等吗?结论:夹在平行线间的平行线段一定相等 .活动目的:通过对平行四边形性质的简单应用,引入了平行线之间的距离的概念;再通过生活中的生活实例的应用,深化对知识的理解。活动效果及注意:1 .在引入平行线之间的距离概念中,先引入点到直线的距离,再通过点到直线的距离来刻画平行线 间的距离。2 .在应用平行四边形性质的同时深入知识、效果很好,学生易于接受。 、第二环节探索活动做一做:如图6-15,以方格纸的格点为顶点画出几个平行四边形,并说明的画得方法和其中的道理目的:通过网格中学生画平行四边形并说理,进一步让学生掌握平行
36、四边形的判定定理注意事项在此活动中,教师应重点关注:(1)学生实验操作的准确性;(2)学生能否运用不同的判定方法对所画得图形进行说明;(3)学生使用几何语言的规范性和严谨性.第三环节巩固练习例1 .如图6-16,在平行四边形 ABCD,点M N分别是AD BC上的两点,点 E、F在对角线BD上,且 DM=BN BE=DF.求证:四边形MEN点平行四边形.证明:四边形 ABC虚平行四边形AD/ CB ./ MDFh NBE又 DM=BN DF=BE.MD监 NBEMF=EN / MFDh NEB ./ MFE=/ NEFMF/ EN四边形MEN陛平行四边形随堂练习:如图:平行四边形 ABCM,
37、/ ABC=70, / ABC的平分线交 AD于点E,过D作BE的平行线交BC于点F , 求/ CDF的度数.( 作法多种,可让学生板演,教师在学生中巡视,随时指出学生作业中的问题)目的:通过练习进行强化和巩固 ,加深学生对平行四边形的性质定理和判定定理的理解,从而达到灵活的运用.第四环节回顾小结:师生共同小结,主要围绕下列几个问题:(1)平行四边形的性质有哪些,判定一个四边形是平行四边形的方法有哪几种?(2)夹在平行线间的平行线段有何特点,你是怎样得到结论的?(3)能综合运用平行线的性质和判定定理。目的:鼓励学生畅所欲言, 总结对本节课的收获和体会;自主建构知识体系, 锻炼学生的口头表达能
38、力,培养学生的自信心;进一步加深对所学知识的理解和记忆。第五环节布置作业:1、随堂练习第1题 课本习题6.5的第1, 2, 3, 4, 5 题2、完成学考精练对应练习教学反思本节课的设计通过探究活动的开展探求平行四边形的判定方法,通过对判定方法的进一步理解,典型例题的分析,精选的随堂练习,学生一定能够掌握平行四边形的判定方法及应用判定方法 解决实际生活的问题.3 . 三角形的中位线知识与技能目标:( 1) 知道三角形中位线的概念,明确三角形中位线与中线的不同。( 2) 理解三角形中位线定理,并能运用它进行有关的论证和计算。( 3) 通过对问题的探索及进一步变式,培养学生逆向思维及分解构造基本图
39、形解决较复杂问题的能力过程与方法目标:引导学生通过观察、实验、联想来发现三角形中位线的性质,培养学生观察问题、分析问题和解决问题的能力。情感态度与价值观目标:1、对学生进行事物之间相互转化的辩证的观点的教育。情感目标2、利用制作的课件,创设问题情景,激发学生的热情和兴趣,激活学生思维。教学重点:三角形中位线定理教学难点:证明三角形中位线性质定理时辅助线的添法和性质的录活应用教学过程第一环节:创设情景,导入课题4 .怎样将一张三角形纸片剪成两部分,使分成的两部分能拼成一个平行四边形?操作:(1)剪一个三角形,记为 ABC(2)分别取AB,AC中点D,E,连接DE(3) 沿DE将4ABC剪成两部分
40、,并将 ABC绕点E旋转180° ,得BCFD.2、思考:四边形ABCD是平行四边形吗?3、探索新结论:若四边形 ABCD是平行四边形,那么DE与B C有什么位置和数 量关系呢?目的:通过一个有趣的动手操作问题入手入手,激发学生学习兴趣,然后设置一连用的递进问题,启发学生逆向类比猜想:DE/BC, DE= 1BC.2由此引出课题.。效果:激发了学生的求知欲和好奇心,激起了学生探究活动的兴趣第二环节:教师讲授,传授新知内容:引入三角形中位线的定义和性质1.定义三角形的中位线,强调它与三角形的中线的区别.2、三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半 目的:通过学生前
41、期的猜测,测量,初步感知三角形中位线的定理和性质。第三环节:师生共析,证明定理内容:已知:如图6-20 (1), DE是ABC勺中位线.求证:DE/ BC,DE=V2BC证明:如图6-20(2),延长DE到F,使DE=EF,连接 CF.( 1)在4ADE和4CFE中 AE=CE, / 1=/ 2,DE=FE .ADE ACFE AJX= E ECF,AD=CF CF / AB BD=ADBD=CF四边形DBCF是平行四边形DF / BC,DF=BCDE / BC,DE= 1 /2BC目的:通过严密的几何证明将三角形中位线定理进行证明,由感性到理性,使学生经历定理的探究过程 ,积累数学活动的经验
42、.第四环节:灵活运用,自我检测内容:如图顺次连结四边形四条边的中点,所得的四边形有什么特点?学生容易发现:四边形ABCD是平行四边形已知:在四边形ABCD中,E, F, G, H分别是AB , BC, CD, DA的中点,如图4-94.求 证:四边形EFGH是平行四边形.分析:(1)已知四条线段的中点,可设法应用三角形中位线定理,找到四边形EFGH的边之问的关系.而四边形ABCD的对角线可以把四边形分成两个三角形, 所以添加辅助线, 连结AC或BD,构造三角形的中位线”的基本图形.练一练:1 . A、B两点被池塘隔开,在没有任何测量工具的情况下,小明通过下面的方法估测出了 A,B间的距离:在A
43、B外选一点C,连结AC和BC,并分别找出 AC和BC的中点M、N,如果测得MN = 20m,那么A、B两点的距离是多少?为 什么?2 .已知:三角形的各边分别为6cm,8cm, 10cm,则连结各边中点所成三角形的周长 为 cm,面积为 cm2,为原三角形面积的 。3 .如图,在四边形 ABCD中,E、F、G、H分别是AB、CD、AC、BD的中点。四边形EGFH是平行 四边形吗?请证明你的结论。目的:巩固三角形中位线定理,同时也兼顾平行四边形判定定理的熟练运用.第五环节:回顾小结,共同提升本节课学了哪些内容?第六环节:分层作业,拓展延伸1、习题 6.6 1,2, 3 题2、完成学考精练对应练习
44、教学反思本节课以探究三角形中位线的性质及证明为主线,开展教学活动。在三角形中位线 定理探究过程中,学生先是通过动手画图、观察、测量、猜想出三角形中位线的性质, 然后师生利用几何画板的测量和动态演示功能验证猜想的正确性,再引导学生尝试构造平行四边形进行证明。通过知识的形成过程,使学生体会探究数学问题的基本方法;通 过定理的探究与证明,努力培养学生分析问题和解决问题的能力,提升学生数学的思维 品质。同时,问题是创造性思维的起点,是兴趣的激发点。好的问题情境,可以调动学生 主动积极的探究。本课采用问题驱动,从概念的产生,到概念的辨析、再到定理的发现 及证明,设计了一个个问题,层层递进,激活了学生的思
45、维,促使学生不断的深入思考。4.多边形的内角和与外角和(一)知识与技能目标掌握多边形内角和定理,进一步了解转化的数学思想过程与方法目标经历质疑、猜想、归纳等活动,发展学生的合情推理能力,积累数学活动的经验,在探索中学 会与人合作,学会交流自己的思想和方法.情感态度与价值观让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充 满着探索和创造.教学重点:多边形内角和定理的探索和应用教学难点:多边形定义的理解;多边形内角和公式的推导;转化的数学思维方法的渗透.教学方法:师生共同讨论法.教学过程第一环节 创设现实情境,提出问题,引入新课1 .三角形是如何定义的?2 .仿照
46、三角形定义,你能学着给四边形、五边形背边形下定义吗?3 .结合图形认识多边形的顶点、边、内角及对角线。目的:对概念分析和归纳,培养学生的口头表达能力和语言组织能力。同时渗透类比思想。第二环节实验探究1 .三角形的内角和是多少度?你是怎么得出的?用量角器度量:分别测量出三角形三个内角的度数,再求和。拼角:将三角形两个内角裁剪下来与第三个角拼在一起,可组成一个平角。目的:学生分组,利用度量和拼角的方法验证三角形的内角和,为四边形内角和的探索奠定基础。2 .四边形的内角和是多少?你又是怎样得出的?B ;c1度量;2拼角;3将四边形转化成三角形求内角和。目的:学生先通过度量、拼角两种方法,猜想得出四边
47、形的内角和是360。,然后引导学生利用分割的方法,将四边形分割成两个三角形来得到四边形的内角和,进一步渗透类比,转化的数学思想。3 .在四边形内角和的探索过程中,用到了几种方法,你认为哪种方法好?请讲述你的理由。度量法:不精确;拼角法:操作不方便;当多边形边数正较大时,度量法、拼角法都不可取。第三种方法:精确、省事且有理论根据。目的:通过几种方法的展示,比较几种方法的优劣,为五边形内角和的探索提供最简捷的方法。4 .根据四边形的内角和的求法,你能否求出五边形的内角和呢?学生动手实践,小组讨论、交流,寻找解答方法,并共同进行归纳总结。估计学生可能有以下几种方法:6ABAB1)咽 2)方法1:如图
48、1,连结AR AC,五边形的内角和为:方法2:如图2,连结AC,则五边形内角和为:36(方法3:如图3,在AB上任取一点F,连结FC FD4X 180° -180 ° =540° 。D 金aAfie F眶4)(图力方法4:如图4,在五边形内任取一点O,连结OAAB(图3)3X180° =540° 。)° +180° =540° 。入FE,则五边形的内角和为:令 (图OB OC OD OE,则五边形内角和为:5X180° -360 ° =540° 。DDD方法5:如图5,在AB上任取一点
49、F,连结FD,则五边形的内角和为:2X 360° -180 ° =540°。方法6:如图6,在五边开外任取一点O,连接OA OB OC OD OE则五边形内角和为: 4X180° -180 ° =540° 。小结:纵观以上各种证明思路,其共同点是通过图形分割,把五边形问题转化为熟悉的三角形、 四边形问题来解决。目的:由于四边形的内角和易求得,这里采用略讲,而着重研究求五边形的内角和。在课堂上应该 留给学生充足的时间讨论、交流,寻求多种不同的分割方法来得出五边形的内角和。这既符合新课 程教学理念,又符合学生的认知规律和年龄特征,同时渗透
50、转化思想。5 .小组合作,完成下面的表格。图 形从一个项点引出 的对角线条数分割成的三 角形个数多地形的 内第和三体舷3)/四边旅5:4)口五功形O六辿形OJn边形O(课件出示讨论结果)6 .从表格中你发现了什么规律?从内边形的一个顶点可以引出 ,一 3)条对角线,把附边形分成一切个三角形。从而得出:制边 形的内角和是(*-2建0。目的:在数学学习中,培养学生善于总结规律,构建知识体系是培养数学能力的一项重要内容,这样不仅使学生把本节课所学的知识形成一个完整的知识体系,而且进一步理解了多边形的内角和公式中的(品-2)的来历,更有利于培养学生善于归纳、总结的数学习惯和能力。第三环节巩固训练1.
51、.如图6-24 ,四边形 ABCDK / A+/ 0=180° , / B与/ D有怎样的关系?2. 一个多边形的内角和为 1440。,则它是几边形?3. 一个多边形的边数增加 1,则它的内角和将如何变化?结论:多边形每增加一条边,它的内角和增加180°目的:通过本组练习题的训练,既巩固了新知,又训练了学生思维的灵活性与开阔性。同时在分组 交流的过程中,学生又感受到了合作的重要性,体验到了成功的快乐,增强了学生的自信心。第四环节 拓展延伸1 .想一想:观察图中的多边形,它们的边、角有什么特点?正多边形定义:在平面内,每个内角都 _、每条边也都的多边形叫做正多边形。目的:学生
52、分组动手实践,通过度量和叠合,感知正多边形的特征(每个角都相等,每条边都相等) 从而使得正多边形的定义的得出水到渠成。2 .议一议:一个多边形的边都相等,它的内角一定都相等吗?一个多边形的内角都相等,它的边一定都相等吗?目的:通过辨析,进一步理解正多边形的定义。3 .练一练:正三角形、正四边形(正方形)、正五边形、正六边形、正八边形的内角分别是多少度?正照边形的内角是多少度?一个正多边形的每个内角都是150° ,求它的边数 ?目的:本组练习的设计,不仅巩固了多边形内角和公式的应用,进一步理解了正多边形的定义,而且通过第题的一题多解,培养学生的发散思维,引出下一课时“探索多边形的外角和
53、”的学习,激发学生预习下一课时的兴趣,培养学生良好的学习习惯。第五环节思维升华议一议:剪掉一张长方形纸片的一个角后,纸片还剩几个角?这个多边形的内角和是多少度 ?与同伴 交流. 目的:引导学生在探究实践的过程中,真正理解和掌握数学的知识、技能和数学思想方法,增强空 间观念及数学思考能力的培养,并获得数学活动经验。第六环节知识小结1 .过本节课的学习,你学到了哪些知识?有何体会?(多边形的有关概念、正多边形、多边形 的内角和定理,并能利用公式进行计算)2 .在学习多边形的有关概念时,我们是通过复习三角形的有关概念来类比得出的。在研究、探 索多边形的内角和公式时,首先从具体的、特殊的四边形、五边形
54、入手,来得出多边形的内角和公 式。在研究问题的过程中,把多边形问题通过分割成三角形来研究,即把复杂问题转化为简单问题, 这种研究和探索问题的方法都是我们在学习数学过程中,经常要用到的,希同学们要领悟这种思想 方法。目的:鼓励学生畅所欲言,总结对本节课的收获和体会,自主建构知识体系,锻炼学生的口头表达 能力,培养学生的自信心。第七环节作业布置作业:1、完成学考精练对应练习2、155 页习题 6.7 1,2.3题;教学反思如何促进学生在主动、探究、合作、实践中学习数学、学好数学,突出新教材的优势呢?我在 这节课中做了大胆的尝试和探索,首先,这节课师生教与学活动是建立在学生的认知发展水平和已 有的经验基础上,教师充分激发学生的学习兴趣和积极性,向学生提供了从事数学活动的机会,构 建了学生自主探究、合作实践与交流的平台;教师较好地引导学生在探究实践的过程中,真正理解 和掌握数学的知识、技能和数学思想方法,增强空间观念及数学思考能力的培养,并获得数学活动 经验;其次,这节课的学习内容,通过创设情境问题得以构建和发展,体现了新课程目标理念的开 放性原则;第三,这节课教师恰当的评价学生的学习过程,不仅关注了学生在学习过程中表现的行 为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年美食节场地租赁及紧急预案合同
- 2024年版货物买卖合同实例
- 2024年生态农业有机肥应用合作协议3篇
- 2024庭院住宅产权转让合同书样本6篇
- 2024幼儿园教育师资培训与交流合同
- 运动健身行业顾问工作总结
- 2024建设工程施工合同示范
- 2025年度安防技术培训与咨询服务协议3篇
- 酒店管理的客房预订管理
- 航空行业设计师工作总结
- 马克思主义基本原理+2024秋+试题 答案 国开
- 苏州大学《线性代数与解析几何》2023-2024学年第一学期期末试卷
- 《地震灾害及其防治》课件
- 2024年版电商平台入驻商家服务与销售分成合同
- 蜜雪冰城合同范例
- LPG液化气充装站介质分析操作规程 202412
- 养老院环境卫生保洁方案
- 2024年WPS计算机二级考试题库350题(含答案)
- 天津市武清区2024-2025学年九年级上学期11月期中物理试题(无答案)
- 2023届安徽省马鞍山市高三第一次教学质量监测(一模)理综生物试题(原卷版)
- 充电桩租赁协议模板
评论
0/150
提交评论