版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、快递员配送路线优化模型摘要如今,随着网上购物的流行,快递物流行业在面临机遇的同时也需要不断迎接新的挑战。如何能够提高物流公司的配送效率并降低配送过程中的成本,已成为急需我们解决的一个问题。下面,本文将针对某公司的一名配送员在配送货物过程中遇到的三个问题进行讨论及解答。对于问题一,由于快递员的平均速度及在各配送点停留的时间已知,故可将最短时间转换为最短路程。在此首先通过Floyd求最短路的算法,利用Matlab程序将仓库点和所有配送点间两两的最短距离求解出来,将出发点与配送点结合起来构造完备加权图,由完备加权图确定初始H圈,列出该初始H圈加点序的距离矩阵,然后使用二边逐次修正法对矩阵进行翻转,可
2、以求得近似最优解的距离矩阵,从而确定近似的最佳哈密尔顿圈,即最佳配送方案。对于问题二,依旧可以将时间问题转化为距离问题。利用问题一中所建立的模型,加入一个新的时间限制条件,即可求解出满足条件的最佳路线。对于问题三,送货员因为快件载重和体积的限制,至少需要三次才能将快件送达。所以需要对100件快件分区,即将50个配送点分成三组。利用距离矩阵寻找两两之间的最短距离是50个配送点中最大的三组最短距离的三个点,以此三点为基点按照准则划分配送点。关键字:Floyd算法 距离矩阵 哈密尔顿圈 二边逐次修正法 矩阵翻转问题重述某公司现有一配送员,从配送仓库出发,要将100件快件送到其负责的50个配送点。现在
3、各配送点及仓库坐标已知,货物信息、配送员所承载重物的最大体积和重量、配送员行驶的平均速度已知。问题一:配送员将前30号快件送到并返回,设计最佳的配送方案,使得路程最短。问题二:该派送员从上午8:00开始配送,要求前30号快件在指定时间前送到,设计最佳的配送方案。问题三:不考虑所有快件送达的时间限制 ,现将100件快件全部送到并返回。设计最佳的配送方案。配送员受快件重量和体积的限制,需中途返回取快件,不考虑休息时间。符号说明:n个矩阵:各个顶点的集合:各边的集合:每一条边:边的权:加权无向图:定点 :哈密尔顿圈:最佳哈密尔顿圈模型的建立一、基本假设1、 假设送货员的始终以24千米/小时的速度送货
4、,中途没有意外情况;2、 假设送货员按照路径示意图行走;3、 假设仓库点为第51点;4、 假设送货员回到仓库点再次取货时间不计。2、 模型建立与求解问题一:1、 数据处理 使用数据处理软件,处理附表2求出给定配送点之间的相互距离。最终使用矩阵对处理数据进行数据统计整理。矩阵前两列表示相互连接的配送点,第三列表示相邻两配送点之间边的距离。使用上述数据矩阵可以构造路线示意图的带权邻接矩阵,再用Floyd算法求出各配送点之间的距离。2、 Floyd算法基本思想 直接在示意图的带权邻接矩阵中,通过插入定点的方法构造出n个矩阵,最后得到的矩阵为距离矩阵,同时求出插入点矩阵以便得到两点之间的最短路程。令为
5、一个加权无向图,其中表示各个顶点的集合,;其中表示各边的集合,而。图中每一条边都对应一个实数,则称为边的权。如果任意两边相连,则为完备图。设是连通无向图,经过的每个定点正好形成一个圈,则称为哈密尔顿圈,简称H圈。最佳哈密尔顿圈是在加权图中,权最小的哈密尔顿圈。判定一个加权图是否存在哈密尔顿圈是一个NP问题,而它的完备加权图(中每条边的权等于之间的最短路径的权)中一定存在哈密尔顿圈。所以需要在完备加权图中寻求最佳哈密尔顿圈。该过程需要采用二边逐次修正法并且利用矩阵翻转实现。3、二边逐次修正法的选法过程(1)、任取初始H圈:(2)、对所有的,若,则在中删去边和而加入边和,形成新的H圈,即(3)、对
6、C重复步骤(2),直到条件不满足为止,最终得到的即为所求。4、 矩阵翻转在一个矩阵中,对他的第i行(列)到第j行(列)翻转是以i行(列)和j行(列)的中心位置为转轴、旋转180度,这样:第i行(列)和第j行(列)位置互换,第i+1行(列)和第j-1行(列)位置互换。图一由附录给定的快件信息可知,130号快件总重量为48.5kg、体积为0.88m3,显然送货员可以一次性携带所有货物到达配送点,经统计配送点共有21个,即13、14、16、17、18、21、23、24、26、27、31、32、34、36、38、40、42、43、45、49首先在程序里设置限制:将出发点51点与21个送货点结合起来构造
7、完备加权图,由完备加权图确定初始H圈,列出该初始H圈加点序的距离矩阵,然后使用二边逐次修正法对矩阵进行翻转,可以求得近似最优解的距离矩阵,从而确定近似的最佳哈密尔顿圈。由于使用矩阵翻转方法来实现二边逐次修正法的结果与初始圈有关,为得到更优解,在使用软件编程时,随机搜索出若干个初始H圈,例如2000。在所有的H圈中筛选权值最小的一个,即就是最佳H圈。最佳H圈的近似解为:在中删去边和而加入边和,形成新的H圈。最终由编程得到近似最佳配送路线以及总长度。图二解得路线总长为54709m,耗时226.77min。问题二:因货物可在一次性配送,故可以不用考虑送货员的最大载重与体积问题。但是较于问题一在选择路
8、线上,需要考虑送货时间问题,不得超过指定时间。所以在问题一的程序中需要再增加时间限制。结合问题一,使用相同方法求解最佳H圈。图三最佳配送路线:解得路线总长为54996m,耗时227.50min问题三:由附录给定的快件信息知,1100号快件总重量为148kg、体积为2.8m3。由于考虑送货员的最大载重与体积,送货员必须分多次配送快件。送货员显然至少需要连续三次配送,才能完成配送任务。因此问题三存在配送点分组、以及每组求最佳配送方案这两个问题。首先需要制定一种比较合理的划分准则,使三组总长加起来最短。需要选择三个点作为每一组的基点,要求这三个点两两之间的最短距离是50个配送点中最大的三组最短距离。
9、利用距离矩阵查找其他任意点与三个基点之间的距离,距离哪一个基点近,就被划分在哪一组。 通过计算三个基点为:9号、28号、43号配送点。通过距离矩阵将100件快件的配送点分组如下:表一使用问题一与问题二中相同的方法:首先将出发点与其他组内点结合起来构造完备加权图,由完备加权图确定初始H圈,列出该初始H圈加点序的距离矩阵,然后使用二边逐次修正法对矩阵进行翻转,可以求得近似最优解的距离矩阵,从而确定近似的最佳哈密尔顿圈。图四最终由程序解得三组最佳配送路线为:第一组: 解得路线总长52743m,耗时227.4min第二组:解得路线总长47736m,耗时221.4min。解得路线总长42421m,耗时208.2min模型的优缺点点评对于问题一所建立的模型,通过Floyd算法和二边逐次修正法找到最优哈密尔顿圈,可以得到准确的最优路线,在不考虑时间及负重限制的情况下,该模型可以精确地计算出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024商场美食节临时摊位租赁合同
- 2024年度健身器材购销合同
- 2024年度国际贸易仲裁与诉讼合同
- 2024年定制LED高炮广告牌建设合同
- 2024乙公司向甲方提供跨境电商服务的详细合同条款
- 2024年度grc材料研发与技术转让合同
- 航天英雄课件教学课件
- 2024年住宅租赁协议:个人与房东间的权利义务规定
- 04版0千伏电力施工合同样本
- 2024年工程招投标合同管理实操手册
- 道路运输企业职业安全健康管理工作台帐(全版通用)参考模板范本
- 中国小学生生命教育调查问卷
- 通用模板-封条模板
- 集团公司后备人才选拔培养暂行办法
- 第五章旅游餐饮设计ppt课件
- 从马克思主义视角看当前高房价
- 长沙市某办公建筑的冰蓄冷空调系统的设计毕业设计
- 不抱怨的世界(课堂PPT)
- 企业盈利能力分析——以青岛啤酒股份有限公司为例
- 消火栓灭火器检查记录表
- 岸墙、翼墙及导水墙砼浇筑方案
评论
0/150
提交评论