版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高二数学(必修5)不等式测试题一、选择题:1、若,且,则下列不等式一定成立的是( )A B C D2、函数的定义域为( )A B C D3、已知,则 ( ) A BC D4、不等式的解集为( )A B C D5、已知等比数列的各项均为正数,公比,设,则P与Q的大小关系是 ( )AP Q BP a2b3 + a3b216、关于x的不等式的解集为空集,求实数k的取值范围.17、已知正数满足,求的最小值有如下解法:解:且. . 判断以上解法是否正确?说明理由;若不正确,请给出正确解法19、制订投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损,某投资人打算投资甲、乙两个项目,根据预测,甲
2、、乙项目可能出的最大盈利率分别为100%和50%,可能的最大亏损率分别为30%和10%,投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元,问投资人对甲、乙两个项目各投资多少万元?才能使可能的盈利最大? 18、已知函数,当时,;当时,。求a、b的值;设,则当k 取何值时, 函数F(x)的值恒为负数?20、某公司按现有能力,每月收入为70万元,公司分析部门测算,若不进行改革,入世后因竞争加剧收入将逐月减少分析测算得入世第一个月收入将减少3万元,以后逐月多减少2万元,如果进行改革,即投入技术改造300万元,且入世后每月再投入1万元进行员工培训,则测算得自入世后第一个月起累计收
3、入与时间n(以月为单位)的关系为=,且入世第一个月时收入将为90万元,第二个月时累计收入为170万元,问入世后经过几个月,该公司改革后的累计纯收入高于不改革时的累计纯收入高二数学(必修5)不等式参考答案参考答案:110 DBAAA ABACA11、 2 12、 (1,+) 13、 (2,3) 14、 203、若a0,则在上为减函数, 6、解法一:(利用均值不等式),当且仅当即时“=”号成立,故此函数最小值是18。解法二:(消元法)由得,由则当且仅当即时“=”号成立,故此函数最小值是18。8、由面积公式可知,则0题99、分析:由可得交点为: 当时可行域是四边形OABC,此时,当时可行域是OA此时
4、,故选D.10、因函数在上得最小值为3,故11、由,即。故= 12、分析:由约束条件14,22在坐标系中画出可行域,如图为四边形ABCD,其中A(3,1),目标函数(其中)中的z表示斜率为a的直线系中的截距的大小,若仅在点处取得最大值,则斜率应小于,即,所以的取值范围为(1,+)。13、由函数f(x)=alg(x2 2a+1)有最小值,可知有最小值,而,故,因此。所以求不等式loga(x25x+7) 0解可转化为求0x25x+7 0又a b,(a - b)2 0 (a + b)(a - b)2(a2 + ab + b2) 0即:a5 + b5 a2b3 + a3b216、分析:本题考查含参数的“形式”二次不等式的解法.关键是对前系数分类讨论.解:(1)当时,原不等式化为80 当x=4、y=6时z取得最大值。答:投资人用4万元投资甲项目、6万元投资乙项目,才能在确保亏损不超过1.8万元的前提下,使可能的盈利最大。19、解:(1)先作出符合条件下函数的大致图象,如图所示,根据图象列出关于函数解析式的参数a,b的关系式。又(2,6),0;(,2)(6,+),0。2和6是方程的两根。故 解得 此时,欲使0恒成立,只要使恒成立,则须要满足:当时,原不等式化为,显然不合题意,舍去。 当时,要使二次不等式的解集为,则必须满足: 解得综合得的取值范围为。2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版食堂泔水处理与环保设备销售合同2篇
- 2025年度电子商务平台承包招商合同范本3篇
- 二零二五版大棚租赁合同绿色环保附加条款3篇
- 2025年度安全生产风险评估与管理合同集3篇
- 年度钴基及钴镍基竞争策略分析报告
- 2025年暑期实习岗位劳动合同范本3篇
- 2025年度专业舞台搭建租赁合同3篇
- 2024-2025学年高中历史课时分层作业十二5.1科学社会主义的奠基人马克思含解析新人教版选修4
- 2025年度环保节能零星工程设计与施工一体化合同4篇
- 2025年度现代农业示范区农资集成采购合同3篇
- 类文阅读:一起长大的玩具(金波)
- 食品公司冷库岗位风险告知卡
- 《AI营销画布:数字化营销的落地与实战》
- 岗位安全培训考试题参考答案
- 英文书信及信封格式详解(课堂)课件
- 星巴克的市场营销策划方案
- 南京某商城机电安装施工组织设计
- 医疗设备托管服务投标方案
- 宗教教职人员备案表
- 麻醉药品、精神药品、放射性药品、医疗用毒性药品及药品类易制毒化学品等特殊管理药品的使用与管理规章制度
- 信访事项复查复核申请书
评论
0/150
提交评论