




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、.新课标人教版课件系列新课标人教版课件系列高中数学必修必修4.2.4.1平面向量数量积的物理背景及其含义.教学目标教学目标 1.掌握平面向量的数量积及其几何意义;掌握平面向量的数量积及其几何意义; 2.掌握平面向量数量积的重要性质及运算律;掌握平面向量数量积的重要性质及运算律; 3.了解用平面向量的数量积可以处理垂直的问了解用平面向量的数量积可以处理垂直的问题;题; 4.掌握向量垂直的条件掌握向量垂直的条件. 教学重点:平面向量的数量积定义教学重点:平面向量的数量积定义 教学难点:平面向量数量积的定义及运算律的教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用理解和平面向量数量
2、积的应用.说课提纲说课提纲一、一、 背景分析背景分析二、教学目标设计二、教学目标设计三、课堂结构设计三、课堂结构设计四、教学媒体设计四、教学媒体设计五、教学过程设计五、教学过程设计六、教学评价设计六、教学评价设计.1 1、学习任务分析、学习任务分析 通过通过“功功”的事例抽象平面向量数量积的含义的事例抽象平面向量数量积的含义, ,探究数量积的性质与运算律探究数量积的性质与运算律, ,体会类比的思想方法体会类比的思想方法, ,提高学生抽象概括、推理论证的能力。提高学生抽象概括、推理论证的能力。 (2)教学重点教学重点(1)学习任务学习任务数量积的概念数量积的概念 一、背景分析一、背景分析.2 2
3、、学生情况分析及教学难点、学生情况分析及教学难点(1)学生情况)学生情况(2 2)教学难点教学难点对数量积的概念的理解对数量积的概念的理解 学生在学习本节内容之前,已熟知了实数的学生在学习本节内容之前,已熟知了实数的运算体系,掌握了向量的概念及其线性运算,具运算体系,掌握了向量的概念及其线性运算,具备了功等物理知识,并且初步体会了研究向量运备了功等物理知识,并且初步体会了研究向量运算的一般方法。算的一般方法。 返回.二、教学目标设计二、教学目标设计1、“数学数学课程标准(实验)课程标准(实验)”对本节内容的对本节内容的要求要求 (1) 通过物理中通过物理中“功功”等事例,理解平面向等事例,理解
4、平面向量数积的含义及其物理意义;量数积的含义及其物理意义; (2) 体会平面向量的数量积与向量投影的关系;体会平面向量的数量积与向量投影的关系; (3) 能运用数量积表示两个向量的夹角能运用数量积表示两个向量的夹角, ,会用会用数量积判断两个平面向量的垂直关系数量积判断两个平面向量的垂直关系。.2 2、教学目标教学目标: (1)了解平面向量数量积的物理背景,理解数了解平面向量数量积的物理背景,理解数 量积的含义及其物理意义;量积的含义及其物理意义; (2 2)体会平面向量的数量积与向量投影的关系,)体会平面向量的数量积与向量投影的关系, 理解掌握数量积的性质和运算律,并能运用性质和运理解掌握数
5、量积的性质和运算律,并能运用性质和运 算律进行相关的运算和判断;算律进行相关的运算和判断; (3 3)体会类比的数学思想和方法,进一步培养学)体会类比的数学思想和方法,进一步培养学 生抽象概括、推理论证的能力。生抽象概括、推理论证的能力。返回.创设问题情景创设问题情景抽象概念抽象概念探究性质探究性质探究运算律探究运算律应用与提高应用与提高例题与练习例题与练习课堂小结课堂小结 数学背景数学背景方法方法物理背景物理背景定义分析定义分析几何意义几何意义物理意义物理意义性质性质证明证明证明证明运算律运算律返回.四、教学媒体设计四、教学媒体设计、高效实用的电脑多媒体课件、高效实用的电脑多媒体课件、科学合
6、理的板书设计、科学合理的板书设计平面向量数量积的物理背景及其含义一、数量积的概念 二、数量积的性质 四、应用与提高、概念: 例1:、概念强调:(1)记法 例2:(2)“规定” 三、数量积的运算律 例3:3、几何意义:4、物理意义:.五、教学过程设计五、教学过程设计活动一:创设问题情景,激发学习兴趣活动一:创设问题情景,激发学习兴趣 活动二活动二: : 探究数量积的含义探究数量积的含义活动三:探究数量积的运算性质活动三:探究数量积的运算性质活动四:探究数量积的运算律活动四:探究数量积的运算律活动五活动五: : 应用与提高应用与提高活动六活动六: 课堂小结与布置作业课堂小结与布置作业. 问题问题1
7、:1: 我们研究了向量的哪些运算?这些我们研究了向量的哪些运算?这些 运算的结果是什么?运算的结果是什么?活动一:创设问题情景,激发学习兴趣活动一:创设问题情景,激发学习兴趣 问题问题2:2:我们是怎样引入向量的加法运算的?我们是怎样引入向量的加法运算的? 我们又是按照怎样的顺序研究这种运算的?我们又是按照怎样的顺序研究这种运算的?物理模型物理模型概念概念性质性质运算律运算律应用应用. 问题问题3:3:如图所示,一物体在力如图所示,一物体在力F F的作用下产的作用下产生生 位移位移S S,()()力力F F所做的功所做的功W= 。 ()() 请同学们分析这个公式的特点:请同学们分析这个公式的特
8、点: W(功)是(功)是 量,量, F F(力)是(力)是 量,量, S S(位移)是(位移)是 量量 是是 。FS.活动二活动二: :探究数量积的含义探究数量积的含义、概念的抽象、概念的抽象问题问题4 4:你能用文字语言来表述功的计算公式吗你能用文字语言来表述功的计算公式吗? ?如果我们将公式中的力与位移推广到一般向量,其结如果我们将公式中的力与位移推广到一般向量,其结果又该如何表述?果又该如何表述?功是力与位移的大小及其夹角余弦的乘积;功是力与位移的大小及其夹角余弦的乘积;结果是两个向量的大小及其夹角余弦的乘积。结果是两个向量的大小及其夹角余弦的乘积。 .(1)定义定义 :(2)定义的简单
9、说明:定义的简单说明:2 2、明晰数量积的定义、明晰数量积的定义 问题:问题:向量的数量积运算与线性运算的结果有什向量的数量积运算与线性运算的结果有什么不同?影响数量积大小的因素有哪些?并完成下表:么不同?影响数量积大小的因素有哪些?并完成下表:cosbaba900 9018090的正负ba.、研究数量积的几何意义、研究数量积的几何意义(1 1)给出向量投影的概念)给出向量投影的概念(2 2)问题:问题:数量积的几何意义是什么?数量积的几何意义是什么?A bcos B1BO.4 4、研究数量积的物理意义、研究数量积的物理意义问题问题: :(1 1)功的数学本质是什么功的数学本质是什么?(2 2
10、)尝试练习尝试练习 一物体质量是一物体质量是10千克,分别做以下运动,求重力做功千克,分别做以下运动,求重力做功 的大小。的大小。 、在水平面上位移为、在水平面上位移为10米;米; 、竖直下降、竖直下降10米;米; 、竖直向上提升、竖直向上提升10米米 、沿倾角为、沿倾角为30度的斜面向上运动度的斜面向上运动10米;米;.SGGSSG)30180cos(SGWSGW SGW0W、竖直下降、竖直下降10米;米;、竖直向上提升、竖直向上提升10米;米;、在水平面上位移为、在水平面上位移为10米;米;、沿倾角为、沿倾角为30的斜面向上运动的斜面向上运动10米;米;GS.活动三:探究数量积的运算性活动
11、三:探究数量积的运算性质质 问题问题: (1 1)将问题的结论推广到一般向量,将问题的结论推广到一般向量,你能得到哪些结论?你能得到哪些结论? (2 2)比较比较 的大小,你有什的大小,你有什么结论?么结论?1 1、性质的发现、性质的发现baba与.2、明晰数量积的性质 设向量设向量 与与 都是非零向量,则都是非零向量,则(1 1) =0 =0 (2 2)当)当 与与 同向时,同向时, =| | | =| | | 当当 与与 反向时,反向时, =-| | | 特别地,特别地, =或或= =(3 3) ababbaaabba babba | | |baaaaa2baaaba3、性质的证明.活动四
12、:探究数量积的运算活动四:探究数量积的运算律律1、运算律的发现 问题问题: : 我们学过了实数乘法的那些运算律?我们学过了实数乘法的那些运算律? 这些这些 运算律对向量是否也适用?运算律对向量是否也适用? 学生可能的回答学生可能的回答: : ab= ba (ab)c= a (bc) (a + b)c=ac +b c.2、明晰运算律 已知向量 和实数,则:cba,abba )1(bababa(2)cbcacba(3)3、运算律的证明学生独立证明运算律(证明运算律(2 2).师生共同证明运算律(师生共同证明运算律(3 3) 证明反思:证明反思:当当00时,向量时,向量 与与 、 与与 的方向的关系
13、如何?此时,向量的方向的关系如何?此时,向量 与与 、 与与 的夹角与向量的夹角与向量 与与 的夹角相等吗?的夹角相等吗?aabbababab.活动五活动五: :应用与提高应用与提高 于哪种实数运算?并思考此运算过程类似,求的夹角为与,、已知例 .3260461 babababa 22222 )2(2 (1) 2babababbaababa是否有以下结论:,、对任意向量例互相垂直?与向量为何值时,不共线,与,、已知例bkabkakbaba43 3.cbcabaababa则,若,有,则对任一非零向量若正确,并说明理由、判断下列各命题是否,0)2(00) 1 (1的形状。时,试判断或当中,、已知A
14、BCbababACaABABC00,2学生练习.活动六、课堂小结与布置作业活动六、课堂小结与布置作业 1 1、本节课我们学习的主要内容是什么?本节课我们学习的主要内容是什么? 2 2、平面向量数量积的两个基本应用是什么?、平面向量数量积的两个基本应用是什么? 3 3、我们是按照怎样的思维模式进行概念的归、我们是按照怎样的思维模式进行概念的归纳纳 和性质的探究?在运算律的探究过程中,和性质的探究?在运算律的探究过程中,渗透了哪些数学思想?渗透了哪些数学思想? 4 4、类比向量的线性运算,我们还应该怎样研、类比向量的线性运算,我们还应该怎样研究数量积?究数量积?返回.拓展与提高:拓展与提高: 已知已知 与与 都是非零向量,且
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新时期发挥内蒙古资源优势的作用及建议
- 公司用人用工管理制度
- 公司统一财务管理制度
- 2025建筑工程土方回填分包合同
- 2025网签版企业间借款合同样本
- 江苏开放大学2025年春服务营销2多项选择题题库
- 广西北海市2023−2024学年高二下册期末教学质量检测数学试卷附解析
- 北京市2023−2024学年高二下册期末数学试卷附解析
- 安徽省安庆市2024-2025学年高二下册期中考试数学试卷附解析
- 2024~2025学年 浙江省高二语文上册11月期中试卷
- 触电急救97课件
- T/CAQI 96-2019产品质量鉴定程序规范总则
- 医疗行业注塑车间的数字化改造实践
- 俱乐部授权协议书
- 《插花艺术》教材任务-项目三 任务二切花装饰设计
- 河南省青桐鸣大联考普通高中2024-2025学年高三考前适应性考试语文试题及答案
- 火电厂安全培训
- 中心静脉压测量技术
- 2025年突发流行性传染性疾病应急演练方案及总结
- 安能快递加盟合同协议
- 项目沟通管理培训
评论
0/150
提交评论