平行四边形优题与易错题答案与解析_第1页
平行四边形优题与易错题答案与解析_第2页
平行四边形优题与易错题答案与解析_第3页
平行四边形优题与易错题答案与解析_第4页
平行四边形优题与易错题答案与解析_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 第6章 平行四边形优题与易错题答案与解析1. 在ABCD中,AB与CD的关系为: AB=CD且ABCD 2考点:三角形中位线定理。专题:规律型。分析:十等分点那么三角形中就有9条线段,每条线段分别长,让它们相加即可解答:解:根据题意:图(1),有1条等分线,等分线的总长=; 图(2),有2条等分线,等分线的总长=a;图(3),有3条等分线,等分线的总长=a; 图(4),有9条等分线,等分线的总长=a=a 故答案为a3考点:三角形中位线定理。分析:作CF中点G,连接DG,由于D、G是BC、CF中点,所以DG是CBF的中位线,在ADG中利用三角形中位线定理可求AF=FG,同理在CBF中,也有CG

2、=FG,那么有AF=CF解答:解:作CF的中点G,连接DG,则FG=GC又BD=DCDGBFAE=EDAF=FG = 故答案为4考点:三角形中位线定理。 分析:根据三角形中位线定理易得所求的三角形的各边长为原三角形各边长的一半,那么所求的三角形的周 长就等于原三角形周长的一半 解答:解:点D、E、F分别是AB、BC、AC的中点,DE,EF,DF分别是原三角形三边的一半, DEF与ABC的周长之比=1:2 故答案为1:25一个任意三角形的三边长分别是6cm,8 cm,12cm,它的三条中位线把它分成三个平行四边形,则它们中周长最小是14cm考点:三角形中位线定理。分析:周长最小的应该是中位线与最

3、短边围成的平行四边形解答:解:如图:AB=6cm,AC=8cm,BC=12cm,D,F,E分别为三角形各边中点三条中位线把它分成三个平行四边形,则它们中周长最小的应该是中位线与最短边围成的平行四边形即ADEFAD=EF=3cm,DE=AF=4cm,其周长为2×3+2×4=14(cm)故答案为146.考点:三角形中位线定理。分析:易得ABD,ACD为ABC面积的一半,同理可得BEC的面积等于ABC面积的一半,那么阴影部分的面积等于BEC的面积的一半解答:解:D为BC中点,根据同底等高的三角形面积相等,SABD=SACD=SABC=×4=2,同理SBDE=SCDE=S

4、BCE=×2=1,SBCE=2,F为EC中点,SBEF=SBCE=×2=1故答案为17考点:三角形中位线定理。专题:整体思想。分析:根据题意,易得MN=DE,从而证得MNOEDO,再进一步求ODE的高,进一步求出阴影部分的面积解答:解:连接MN,作AFBC于FAB=AC,BF=CF=BC=×8=4,在RtABF中,AF=,M、N分别是AB,AC的中点,MN是中位线,即平分三角形的高且MN=8÷2=4,NM=DE,MNOEDO,O也是ME,ND的中点,阴影三角形的高是1.5÷2=0.75,S阴影=4×0.75÷2=1.58考点

5、:三角形中位线定理;翻折变换(折叠问题)。专题:操作型。分析:由翻折可得PDE=CDE,由中位线定理得DEAB,所以CDE=DAP,进一步可得APD=CDE解答:解:PED是CED翻折变换来的,PEDCED,CDE=EDP=48°,DE是ABC的中位线,DEAB,APD=CDE=48°,点评:本题考查三角形中位线定理的位置关系,并运用了三角形的翻折变换知识,解答此题的关键是要了解图形翻折变换后与原图形全等9考点:三角形中位线定理;翻折变换(折叠问题)。分析:根据折叠图形的对称性,易得EDFEAF,运用中位线定理可知AEF的周长等于ABC周长的一半,进而DEF的周长可求解解答

6、:解:EDF是EAF折叠以后形成的图形, EDFEAF, AEF=DEF,AD是BC边上的高, EFCB,又AEF=B, BDE=DEF,B=BDE,BE=DE,同理,DF=CF,EF为ABC的中位线,DEF的周长为EAF的周长,即AE+EF+AF=(AB+BC+AC)=(12+10+9)=15.510考点:三角形中位线定理。专题:规律型。分析:根据三角形的中位线定理建立周长之间的关系,按规律求解解答:解:根据三角形中位线定理可得第二个三角形的各边长都等于最大三角形各边的一半,那么第二个三角形的周长=ABC的周长×=1×=,第三个三角形的周长为=ABC的周长×&#

7、215;=()2,第10个三角形的周长=()911考点:三角形中位线定理;等边三角形的性质。分析:利用平移性质可得图形ABCDEFG外围的周长等于等边三角形ABC的周长加上AE,GF长,利用三角形中位线长定理可得其余未知线段的长解答:解:ABC、ADE及EFG都是等边三角形,D和G分别为AC和AE的中点,AB=AC=BC=4DE=CD=AC=×4=2,EF=GF=AG=DE=×2=1图形ABCDEFG外围的周长是AB+CD+BC+DE+EF+GF+AG=4+2+4+2+1+1+1=1512考点:三角形中位线定理;等边三角形的性质。 分析:根据等边三角形的中位线所围成的三角形

8、仍是等边三角形可求得中位线的长为2,则等边三 角形的边长为4 解答:解:等边三角形的中位线所围成的三角形的周长为6, 中位线的长为2,等边三角形的边长为413考点:三角形中位线定理。 分析:三角形的高和梯形的高相等,那么面积之比等于的三角形的底边和梯形上下 底边之和的比解答:解:在ABC中,DE为中位线,BC=2DE,设高为hSADE=DEh=DEh;S梯形BCED=(DE+BC)h=DEh,SADE:S梯形BCED=,14考点:三角形中位线定理;直角三角形斜边上的中线。分析:先根据三角形中位线定理求出AC的长,再利用直角三角形斜边上的中线等于 斜边的一半解答解答:解:D、F是BC、AB的中点

9、,AC=2FD=2×8=16cm,E是AC的中点,AHBC于点H,EH=AC=8cm15考点:三角形中位线定理;等腰三角形的性质。分析:由D、E是AC、AB中点,可知DE是ABC的中位线,那么DEAB,即1=3,又AD=DE,又可得2=3,那么可知是正确的,有D是AC中点,AD=DE,可证CD=DE,再利用DEAB,可得出B=C在RtAEC中,2不一定等于C,所以不正确解答:解:由题意可证明ADE、DEC、ABC都是等腰三角形,AEC是直角三角形,则结论正确的是 故选D16.解:由题意可得,DC=5cm,平行四边形ABCD,BAE=DEA,又AE为DAB的角平分线,DAE=DEA,A

10、DE是等腰三角形,AD=DE,当DE=2cm时,该平行四边形的周长是10+4=14cm; 当DE=3cm时,该平行四边形的周长是10+6=16cm17考点:平行四边形的性质。分析:如图:根据题意可以作出两种不同的图形,所以答案有两种情况因为在ABCD中,AD=2,AE平分DAB交CD于点E,BF平分ABC交CD于点F,所以DE=AD=CF=BC=2;则求得ABCD的周长解答:解:四边形ABCD是平行四边形,ABCD,BC=AD=2,AB=CD,EAB=AED,ABF=BFC,AE平分DAB,BF平分ABC,DAE=BAE,CBF=ABF,AED=DAE,BFC=CBF,AD=DE,BC=FC,

11、 DE=CF=AD=2,由图得:CD=DE+CFEF=2+21=3,ABCD的周长为10;由图得:CD=DE+CF+EF=2+2+1=5,ABCD的周长为14ABCD的周长为10或14故答案为10或1418考点:平行四边形的性质。分析:利用平行四边形的性质,根据三角形的面积和平行四边形的面积逐个进行判断,即可求解解答:解:A、因为高相等,三个底是平行四边形的底,根据三角形和平行四边形的面积可知,阴影部分的面积等于平行四边形的面积的一半,正确;B、因为两阴影部分的底与平行四边形的底相等,高之和正好等于平行四边形的高,所以阴影部分的面积等于平行四边形的面积的一半,正确;C、根据平行四边形的对称性,

12、可知小阴影部分的面积等于小空白部分的面积,所以阴影部分的面积等于平行四边形的面积的一半,正确;D、无法判断阴影部分面积是否等于平行四边形面积一半,错误故选D点评:本题考查了平行四边形的性质,并利用性质结合三角形的面积公式进行判断,找出选项19考点:平行四边形的性质。专题:动点型。分析:根据平行四边形的性质,得ABDBCD,BEPBHP,PGDPFD,所以得其面积分别相等,从而得面积相等的平行四边形有3对解答:解:面积始终相等的平行四边形有:平行四边形AEPG和平行四边形PHCF;平行四边形ABHG和平行四边形BEFC;平行四边形AEFD和平行四边形GHCD共3对故选C20考点:平行四边形的性质

13、。分析:可先求平行四边形的总面积,因为AE=EF=FC,所以三个小三角形的面积相等,进而可求解解答:解:如图,过点D作DGAB于点G,AD=6,DAB=30°,DG=3,平行四边形ABCD的面积为S=ABDG=8×3=24,ABC的面积为S=×24=12BEF的面积S=×12=421考点:平行四边形的性质。专题:规律型。分析:从图中这三个图形中找出规律,可以先找出这三个图形中平行四边形的个数,分析三个数字之间的关系从而求出第n个图中平行四边形的个数解答:解:从图中我们发现(1)中有6个平行四边形,(2)中有18个平行四边形, (3)中有36个平行四边形,

14、第n个中有3n(n+1)个平行四边形故选B22考点:平行四边形的性质。专题:应用题。分析:由于在平行四边形中,已给出条件MNABDC,EFDACB,因此,MN、EF把一个平行四边形分割成四个小平行四边形,所以红、紫四边形的高相等,由此可证明S1S4=S2S3解答:解:设红、紫四边形的高相等为h1,黄、白四边形的高相等,高为h2,则S1=DEh1,S2=AFh2,S3=ECh1,S4=FBh2,因为DE=AF,EC=FB,所以A不对;S1+S4=DEh1+FBh2=AFh1+FBh2, S2+S3=AFh2+ECh1=AFh2+FBh1,所以B不对;S1S4=DEh1FBh2=AFh1FBh2,

15、 S2S3=AFh2ECh1=AFh2FBh1,所以S1S4=S2S3,故选C23考点:平行四边形的性质。分析:四边形具有不稳定性、外角和等于360°、内角和等于360°,不具有的是对角线互相平分;对角线互相平分的四边形是平行四边形解答:解:A、一般四边形都具有不稳定性,不仅仅是平行四边形具有,错误;B、对角线互相平分,是平行四边形的一种判定方法,一般四边形不具有,正确;C、任意四边形的外角和等于360°,不仅仅是平行四边形具有,错误;D、任意四边形的内角和等于360°,不仅仅是平行四边形具有,错误故选B24考点:平行四边形的性质。分析:根据平行四边形的

16、性质可知ABC的面积是平行四边形面积的一半,再进一步确定BER和ABC的面积关系即可解答:解:SABCD=12 SABC=SABCD=6,SABC=×AC×高=×3EF×高=6,得到:×EF×高=2,BEF的面积=×EF×高=2BEF的面积为225考点:垂线;多边形内角与外角。专题:分类讨论。分析:分2在1的内部和外部两种情况讨论,当2在1内部时,利用四边形的内角和定理求解即可;当2在1的外部时,根据等角的余角相等的性质2=1解答:解:如图,因为1与2的位置不明确,所以分2在1的内部和外部两种情况讨论:(1)如图一

17、,当2在1内部时,2=360°190°90°=360°48°90°90°=132°;(2)如图二,当2在1的外部时,3=4,1与2的两边互相垂直,2=1=48°因此2的度数为48°或132°点评:本题主要考查垂直得到90°角,本题注意分两种情况讨论,学生往往容易漏掉2在1外部的情况而导致出错26考点:多边形。分析:一个n边形剪去一个角后,剩下的形状可能是n边形或(n+1)边形或(n1)边形解答:解:当剪去一个角后,剩下的部分是一个四边形,则这张纸片原来的形状可能是四边形或三角

18、形或五边形,不可能是六边形故选A点评:剪去一个角的方法可能有三种:经过两个相邻顶点,则少了一条边;经过一个顶点和一边,边数不变;经过两条邻边,边数增加一条27.考点:平面镶嵌(密铺)。分析:分别求出各个正多边形的每个内角的度数,结合镶嵌的条件即可求出答案解答:解:正三角形的每个内角是60°,正方形的每个内角是90°,3×60°+2×90°=360°,正三角形可以;正五边形每个内角是180°360°÷5=108°,正方形的每个内角是90°,108m+90n=360°显

19、然n取任何正整数时,m不能得正整数,故不能铺满;正方形的每个内角是90°,正六边形的每个内角是120度90m+120n=360°,m=443n,显然n取任何正整数时,m不能得正整数,故不能铺满;正方形的每个内角是90°,正八边形的每个内角为:180°360°÷8=135°,90°+2×135°=360°,正八边形可以故答案为正三角形或正八边形28考点:等边三角形的判定与性质;多边形内角与外角。专题:计算题。分析:先延长其中三边构造等边三角形,利用等边三角形的性质解题即可解答:解:如图所

20、示,六个内角都是120°,三角形的每个内角都是60°,即CDE,BFG,AHI,ABC都为等边三角形,CE=2,BF=3,BC=2+4+3=9,AH=ABGHBG=913=5,DI=ACAICD=952=2,HI=AH=5,该六边形的周长是:1+3+4+2+2+5=17故答案为1729考点:三角形中位线定理。分析:此三角形的三条中位线等于原三角形三边的一半,表示出三条中位线,让其相加得9,即可求得最长的中位线,也就求出了最长的边长解答:解:设三角形三边分别为2x,3x,4x三角形的三条中位线围成的三角形的周长是+=9解得:x=2原三角形的最长边是4×2=8故答案为

21、830考点:三角形中位线定理;直角三角形斜边上的中线。分析:易知DE是ABC的中位线,那么AB=2DE,而CF是ABC斜边上的中线,应等于AB的一半解答:解:ABC是直角三角形,CF是斜边的中线,CF=AB,又DE是ABC的中位线,AB=2DE=2×3=6cm,CF=×6=3cm31考点:三角形中位线定理。分析:先根据平行线的判定定理判定ABDE,再根据BD=CD判定DE是ABC的中位线,进而根据三角形的中位线定理解答即可解答:解:B=CDE,ABDE,D、E两点分别在BC、AC边上,BD=CD,DE是ABC的中位线,AB=2DE,DE=2,AB=2DE=2×2=

22、432(2009太原)如果三角形的两边分别为3和5,那么连接这个三角形三边中点所得的三角形的周长可能是()A4B4.5C5D5.5考点:三角形中位线定理;三角形三边关系。分析:本题依据三角形三边关系,可求第三边大于2小于8,原三角形的周长大于10小于16,连接中点的三角形周长是原三角形周长的一半,那么新三角形的周长应大于5而小于8,看哪个符合就可以了解答:解:设三角形的三边分别是a、b、c,令a=3,b=5,2c8,10三角形的周长16,5中点三角形周长8故选D33考点:三角形中位线定理;勾股定理。分析:由中位线定理易得BC长,那么利用勾股定理即可求得AB长解答:解:ABC中,B=90

23、6;,D、E分别是边AB、AC的中点,BC=2DE=2×4=8,在RtABC中,AC=10,BC=8,由勾股定理得AB=6故答案为634考点:三角形中位线定理。专题:操作型。分析:应先根据所给条件判断出ABE的形状,得到BAE的度数,利用所给线段即可求得AE长解答:解:FGADFBA=BAD在直角三角形ABE中,F是AE的中点,AF=BFFAB=FBAFAB=BAD=BAE=30°在直角三角形ABE中,根据勾股定理,得AE=2故答案为2点评:主要是发现一个30°的直角三角形ABE,此题也是折叠等边三角形的一种方法:延长EB交AD于M,则三角形AEM即是等边三角形3

24、5考点:平行四边形的判定与性质;三角形的面积;勾股定理。分析:连接AC交BD于G,AE交DF于H根据一组对边平行且相等的四边形是平行四边形,得平行四边形AEDB和AFDC易得AC=FD,EH=BG计算该六边形的面积可以分成3部分计算,即平行四边形AFDC的面积+三角形ABC的面积+三角形EFD的面积解答:解:连接AC交BD于G,AE交DF于HAB平行且等于ED,AF平行且等于CD,四边形AEDB是平行四边形,四边形AFDC是平行四边形,AE=BD,AC=FD,EH=BG平行四边形AFDC的面积+三角形ABC的面积+三角形EFD的面积=FDBD=24×18=43236考点:平行四边形的

25、性质。分析:设平行四边形的面积为1,则DAM的面积=SDAB=SABCD,而由于=,所以EMB上的高线与DAB上的高线比为=,所以SEMB=×SDAB=,于是SDEC=4SMEB=,由此可以求出阴影面积,从而求出面积比为解答:解:设平行四边形的面积为1,四边形ABCD是平行四边形,SDAB=SABCD,又M是ABCD的AB的中点,则SDAM=SDAB=,而=,EMB上的高线与DAB上的高线比为=,SEMB=×SDAB=,SDEC=4SMEB=,S阴影面积=1=, 则面积比为故填空答案:另解:四边形面积为ah三角形AMD、DMB、CBM面积均为,则四边形MBCD面积为,由此即可求解37考点:全等三角形的判定与性质;平行四边形的性质。分析:根据三角形全等的判定,由已知条件可证ABECDF;继而证得AG=GH=HC;又根据三角形的中位线定理可证ABGDCH,得EG=BG而SABE=SAGE不正确故正确的结论有3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论