年产10万吨纤维质原料酒精发酵工艺设计毕业设计_第1页
年产10万吨纤维质原料酒精发酵工艺设计毕业设计_第2页
年产10万吨纤维质原料酒精发酵工艺设计毕业设计_第3页
年产10万吨纤维质原料酒精发酵工艺设计毕业设计_第4页
年产10万吨纤维质原料酒精发酵工艺设计毕业设计_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、唐 山 学 院毕 业 设 计设计题目: 年产10万吨纤维质原料酒精发酵工艺设计 系 别: 环境与化学工程系 班 级: 08化学工程与工艺(2)班 姓 名: 路 冉 冉 指 导 教 师: 李 云 凯 2012年6月11 日唐山学院毕业设计(论文)任务书 环境与化学工程 系 08化工本 专业 2 班 姓名:路冉冉 毕业设计(论文)时间: 2012 年 3 月 21 日 至 2012 年 6 月 24 日毕业设计(论文)题目: 年产10万吨纤维质原料酒精发酵工艺设计 1.毕业设计(论文)的目的和意义本设计主要设计工艺流程、物料衡算、热量衡算和主要设备工艺计算,参考淀粉质原料较成熟的工艺,同时考虑国内

2、外的一些先进设备,以尽量减少损失,达到最佳的操作,并获得较大的酒精收率,为后续工艺设计合理的技术路线。整个设计应安全适用并符合国家要求,添加合适的安全系数后本设计可以应用到实际的生产当中去。2.毕业设计(论文)课题任务的内容和要求通过论证分析和技术经济比较,确定较为合理工艺流程。通过对工艺流程和工艺参数的确定,进行物料衡算、热量衡算、水平衡计算、耗电量计算、设备的计算与选型以及经济概算等。并在设备的计算与选型基础上,绘制图纸。3.毕业设计(论文)成果的要求根据设计结论对所需设备进行选型。通过对物料进行工艺计算,确定每个设备的的工艺尺寸。进行各种衡算。完成图纸四张(2号图纸):重点设备图、全厂工

3、艺流程图、车间平面布置和全厂平面布置图。毕业设计(论文)进度计划安排阶段应完成的主要工作起止教学周1查阅相关文献,论文总体设计,填写工作进度计划表,撰写开题报告4-52确定设计大致思路63进行工艺比较,方法的论证,物料衡算7-84热量衡算的计算,空气、水量的计算,设备的选型9-105工艺图和设备图的作图11-146整理试验数据,撰写论文,上交指导老师157论文答辩168主要参考文献1 吴思方. 发酵工厂工艺设计概况M. 北京:中国轻工业出版社,1998.102 陈宁. 氨基酸工艺学M. 北京:中国轻工业出版社,2007,1 3陈洪章. 纤维素生物技术M. 北京,化学工业出版社, 20054吴德

4、荣. 化工工艺设计手册 第四版(上下册) M. 化学工业出版社, 20095谢林, 吕西军. 玉米酒精生产新技术M. 北京, 中国轻工业出版社, 20006贾树彪等. 新编酒精工艺学M. 北京,化学工业出版社, 2004指导教师(签名): 审批人(签名):毕业设计(论文)指导教师评议书(1)序号评分指标具 体 要 求分数范围得 分1学习态度努力学习,勤于思考,遵守纪律,作风严谨务实。04分2调研论证能独立查阅文献资料及从事其它形式的调研,能较好地理解课题任务并提出实施方案,有分析整理各类信息并从中获取新知识的能力。08分3综合能力能综合运用所学知识和技能发现与解决实际问题,工作中有创新精神,成

5、果有新意或有实用价值。010分4设计(论文)质量论证、分析、设计、计算、建模、实验正确合理,工作量饱满。010分5外文翻译摘要及外文资料翻译准确,文字流畅,符合规定内容及字数要求。04分6说明书(论文)撰写质量说明书文字通顺、结构严谨、逻辑性强、格式规范、符合规定字数要求,绘图清楚、工整、规范。 04分合计040分评语:指导教师: 年 月 日本毕业设计(论文)需要特殊说明的有关问题指导教师: 年 月 日毕业设计(论文)评阅教师评议书(2)序号评分指标具 体 要 求分数范围得 分1调研论证能独立查阅文献资料及从事其它形式的调研,能较好地理解课题任务并提出实施方案,有分析整理各类信息并从中获取新知

6、识的能力。04分2综合能力能综合运用所学知识和技能发现与解决实际问题,工作中有创新精神,成果有新意或有实用价值。05分3设计(论文)质量论证、分析、设计、计算、建模、实验正确合理,工作量饱满。06分4外文翻译摘要及外文资料翻译准确,文字流畅,符合规定内容及字数要求。02分5说明书(论文)撰写质量说明书文字通顺、结构严谨、逻辑性强、格式规范、符合规定字数要求,绘图清楚、工整、规范。 03分合计020分评语:评 阅 人: 年 月 日毕业设计(论文)答辩小组评议书(3)评分指标具 体 要 求分数范围自 述思路清晰,语言表达准确,概念清楚,论点正确,分析归纳合理。0 7分水 平工作中有创新精神,成果有

7、新意或有实用价值。0 8分答 辩能够正确回答所提出的问题,基本概念清楚,有理论根据。020分资 料资料齐全,符合学院毕业设计(论文)规范化要求。0 5分合计040分评委1评委2评委3评委4评委5评委6评委7总 分平均成绩答辩纪要:答辩小组秘书(签字):年 月 日答辩小组组长(签字):年 月 日答 辩 委 员 会 意 见指导教师评议评阅人评议答辩小组评议汇总成绩秘书(签字)唐山学院 系毕业设计(论文)答辩委员会于 年 月 日审查了 专业学生 的毕业设计 (论文) (其中设计说明书(论文)共 页,设计图纸 张)。根据其设计(论文)的完成情况以及指导教师、评阅教师、答辩小组的意见,系毕业设计(论文)

8、答辩委员会认真审议,决议如下:成绩评定为: 主任(签字): 年 月 日 1 引 言11.1 酒精发展现状11.1.1 酒精的概述11.1.2 酒精发酵工艺11.2 纤维质概述11.2.1 纤维素的结构与性质21.2.2 半纤维素的结构与性质21.2.3 木质素的结构与性质21.3 纤维质酒精发酵现状21.4 本课题的目的和意义32 设计概论52.1毕业设计的题目52.2毕业设计的目的52.3 毕业设计的任务52.4 设计的指导思想52.5 设计的依据62.6 生产方案的确定和产品方案62.7 厂址选择的总原则6厂址选择的重要性6厂址选择的基本任务7厂址选择的一般原则72.8工厂总平面布置7工厂

9、总平面布置的一般原则72.9车间布置82.9.1 车间(装置)布置的重要性8车间 (装置)布置的组成8车间 (装置)布置的原则93 工艺论证103.1 纤维素发酵乙醇工艺概述103.2 工艺条件及说明103.2.1 预处理工序103.2.2 酶水解工序12发酵工序133.2.4 蒸馏工序174 工艺计算204.1酒精生产过程的总物料衡算20原料消耗量计算204.1.2 发酵醪量的计算20成品与废醪量的计算214.1.4 年产量为10万吨燃料酒精的总物料衡算224.2 酒精生产各工段物料和能量衡算234.2.1 预处理工段23水解工段23发酵工序24蒸馏工序244.3 供水衡算28精馏塔分凝器冷

10、却用水28成品酒精冷却和杂醇油分离器稀释用水29用水量294.4 其他衡算29供气衡算29供电衡算305设备选型及计算315.1预处理设备31调浆桶31蒸煮罐个数计算31蒸煮罐的轮廓尺寸计算325.2水解罐的计算32水解罐体积32水解罐数量325.3发酵设备设计33发酵罐容积和个数的确定33冷却面积和冷却装置主要结构尺寸34发酵罐壁厚36进出口管径37其他罐体设备375.5其他设备38蒸馏设备38换热器的选型386车间常用布置设计406.1发酵设备406.2蒸馏设备及其他设备40结 论41谢 辞42参考文献43外文资料44译文501 引 言1.1 酒精发展现状1.1.1 酒精的概述1.1.2

11、酒精发酵工艺1.2 纤维质概述 纤维素的结构与性质 1.2.2 半纤维素的结构与性质 1.2.3 木质素的结构与性质 1.3 纤维质酒精发酵现状1.4 本课题的目的和意义2 设计概论2.1毕业设计的题目2.2毕业设计的目的2.3 毕业设计的任务2.4 设计的指导思想2.5 设计的依据2.6 生产方案的确定和产品方案2.7 厂址选择的总原则4厂址选择的重要性厂址选择的基本任务2.7.3厂址选择的一般原则2.8工厂总平面布置工厂总平面布置的一般原则2.9车间布置2.9.1车间 (装置)布置的重要性2.9.2车间 (装置)布置的组成42.9.3车间 (装置)布置的原则3.1 纤维素发酵乙醇工艺概述3

12、.2 工艺条件及说明 预处理工序(1)目的(2)工艺流程(3)工艺参数(4)主要设备 酶水解工序(1)目的 (2)工艺流程(3)工艺参数(4)生产设备发酵工序(1)目的(2)原料(3)工艺流程图3-4 发酵工序工艺流程图(4)工艺参数表3-3 发酵过程工艺参数(5)发酵醪的成熟指标表3-4 发酵醪的成熟标准(6)清洗、灭菌(7)空气压缩及二氧化碳回收(8)主要设备3.2.4 蒸馏工序11(1)目的(2)工艺流程图3-5 酒精蒸馏工艺流程图(3)工艺参数表3-5 酒精蒸馏工艺参数13(4)4 工艺计算酒精生产过程的总物料衡算原料消耗量计算(基准:1吨无水乙醇)(1)玉米秸秆原料生产酒精的总化学反

13、应式为:(2)生产1000kg无水酒精的理论纤维素消耗量:4.1.2 发酵醪量的计算 4.1.3成品与废醪量的计算 (kJ/kg.k) kJ kJ4.1.4 年产量为10万吨燃料酒精的总物料衡算4.2 酒精生产各工段物料和能量衡算4.2.1 预处理工段Q2=c'·m·t2c'水解工段(g/h)发酵工序蒸馏工序图2-1 醪塔的物料和热量平衡图表4-3 年产10万吨酒精蒸馏工段精馏塔物料热量衡算汇总表4.3 供水衡算4.3.1 精馏塔分凝器冷却用水4.3.2 成品酒精冷却和杂醇油分离器稀释用水4.3.3 总用水量4.4 其他衡算4.4.1供气衡算4.4.2供电衡

14、算5设备选型及计算5.1预处理设备调浆桶 拌料桶总容积决定于操作周期长短,调浆桶的总容积可按下式求得: V总=式中 G酒精厂每小时投人原料量(kg/h),取 n加水比 t调浆桶操作周期(min),一般取30min左右 调浆后醪密度,玉米秸秆加水比为1:3时约为950kg/m3调浆罐填充系数,一般0.8V总= 调浆桶的个数为n= V总/ V调=199/51.5=3.86(个)调浆桶由于是分批投料,为了满足连续蒸煮的要求,一般应设两组,一组调浆桶取4个。5.1.2蒸煮罐个数计算玉米秸秆加水比为1:3时,醪密度约为950kg/m35.1.3蒸煮罐的轮廓尺寸计算185.2水解罐的计算水解罐体积水解罐数

15、量5.3发酵设备设计5.3.1发酵罐容积和个数的确定5.3.2冷却面积和冷却装置主要结构尺寸5.3.3发酵罐壁厚205.3.4进出口管径215.3.4其他罐体设备5.5其他设备5.5.1蒸馏设备11、18、22蒸馏设备采用差压蒸馏两塔系机组,可以充分利用过剩的温差,也就是减少了有效热能的损失。参照 “上海酒精总厂差压蒸馏两塔系机组方案”,设计蒸馏机组如下:(1)醪塔:仿法国方形浮阀塔板,塔径3000mm,22板,板间距500mm,塔高14800mm,裙座直径3000mm,高5000mm;(2)精馏塔:仿法国方形浮阀塔板,塔径2600mm,65板,板间距350mm,塔高26500mm,裙座直径2

16、600mm,高5000mm。5.5.2换热器的选型调浆桶蒸煮罐7阮奇城 : 4吴德荣. 化工工艺设计手册 第四版(上下册) M, 化学工业出版社20095谢林, 吕西军. 玉米酒精生产新技术. M, 北京中国轻工业出版社2000100-1506贾树彪等. 新编酒精工艺学M .北京化学工业出版社2004.7-3047姚汝华.酒精发酵工艺学M .华南理工大学出版社1999: 1-2538张鹏. 秸秆纤维素水解与木糖酒精发酵. 北京化工大学博士学位论文2010: 1-59王铎, 常春. 木质纤维素原料酶水解产乙醇工艺的研究进展. 生物加工过程, 2010: 3-610李秋园. . : 2-511章克

17、昌, 吴佩琮. 酒精工业手册M. 中国轻工业出版, 1989: 1-23112陈其斌(美). 甘蔗糖手册(下册)M. 轻工业出版社, 1988:1-57413章克昌. 酒精与蒸馏酒工艺学M . 中国轻工业出版社, 2002: 1-56714贾树彪等. 新编酒精工艺学M .化学工业出版, 2004: 1-33315许开天. 酒精蒸馏技术(第二版)M . 中国轻工业出版, 1998:1-43616马赞华. 酒精高效清洁生产新工艺M. 化学工业出版社, 2003: 1-27317. . : 18郭年祥. 化工过程及设备M. 冶金工业出版社2003:1-41019邱树毅. 生物工艺学M. 化学工业出版

18、社2009: 1-21920董大勤. 化工设备机械基础M. 化学工业出版社2002: 1-51221郑裕国. 生物工程设备M. 化学工业出版社2007: 1-33522 张君, 刘德华. . : . . : 外文资料Grain pearling and very high gravity (VHG) fermentation technologies for fuel alcohol production from rye and triticaleAbstractA SATAKE laboratory abrasive mill was used for rye and triticale

19、grain processing. About 12% of dry grain mass was removed after three and five successive abrasions for triticale and rye, respectively. Starch contents in the pearled grain were increased by 8.0% for triticale, and by 7.1% for rye. The pearled rye and triticale were ground and fermented by active d

20、ry yeast for fuel alcohol production by very high gravity (VHG) fermentation at 20°C. VHG technology was applied to increase final ethanol concentrations in the fermentors from 9.5 10.0% (v/v) (normal gravity) to 12.9 15.1% (v/v). The grain pearling process coupled with VHG technology further r

21、aised the ethanol concentration to 15.7 16.1% (v/v). Partial removal of outer grain solids in an alcohol plant would improve plant efficiency and decrease energy requirements for mash heating, mash cooling, and ethanol distillation. 1. IntroductionBecause wheat prices have increased during recent ye

22、ars,less expensive alternative crops such as rye and triticale are being considered as feedstocks by fuel alcohol plants in Western Canada. Corn, the major feedstock used by mostfuel ethanol plants operated in the United States, is not generally available in Western Canada. Previous studies have sho

23、wn that both rye and triticale are fermentable at normal and very high grav ity levels. The ability to ferment these grains, as measured by fermentation efficiency and duration for the completion of fermentation, were comparable with those of wheats, barley and oats.To increase the efficiency of an

24、existing fuel alcohol plant, two potential improvements would be the increase in starch concentration in the feedstock and the use of high or very high gravity(VHG) fermentation technology.VHG technology refers to the use of mashes with 300g or more dissolved solids per litre. Most distillers and fu

25、el alcohol manufacturers ferment grain mashes at normal gravity levels of 20 24 g of dissolved solids per 100 g. With wheat, oats, barley, rye and triticale, VHG fermentation technology has proven successful in increasing the final ethanol concentration and reducing processing costs. It .is also pos

26、sible to increase starch content in feedstock by partial removal of grain bran. Processes .for pearling wheat using modified rice polishing equipment have been developed .as the TrigoTecand PeriTec Systems. An excellent review of recent applications of pearling grains, including the two patented sys

27、tems, has been published by Dexter and Wood.A recent study on wheat preprocessing performed on a three- stage experimental Allis Chalmers Mill showed that starch contents were increased from 54 57% to 64 68% (as is basis) in flour. The concentrations of ethanol in beer were subsequently increased fr

28、om an average of 10·6% (w/v) to 12.4% .(w/v) . Grain abrasion per- formed on barley,rye and triticale by abrasive milling carried out on the SATAKE Testing Mill (model TM05,SATAKE Co.,Tokyo,Japan), removed 7.7 21.7% of outer grain solids, which was predicted to decrease gas consumption by 3.5 1

29、1.4%,and power consumption by 5.2 15.6% in a 10 million litre ethanol plant.The objectives of the current study were to determine the effect of grain pearling combined with the use of VHG fermentation technology on fermentation performances of rye and triticale for fuel alcohol production.2. Materia

30、ls and methods2.1. Rye and triticale samplesFall rye (PRIMA) and triticale (AC COPIA) were both developed by and obtained from Agriculture and AgriFood Canada (Saskatoon, SK Canada). The fall rye had a moisture content of 12.16±0.02%, and a starch content of 62.35± 1.31% (dry basis). The t

31、riticale had a moisture content of 10.50±0.02%, and a starch content of 63.13±1.32% (dry basis).2.2. MillingBefore milling,all grains were tempered or adjusted to 12.5% wb moisture levels for 18 h.The SATAKE abrasive testing mill (Model TM05, SATAKE Co., Tokyo,Japan), equipped with a mediu

32、m abrasive roller (stone) No.36,and a round hole (1.9mm diameter) screen,was used in all experiments.The roller speed was 750 rpm.The milling sequence included three and five abrasions for triticale and rye, respectively.Each abrasion lasted for 30 s. After each abrasion, the abraded fines were coll

33、ected by brushing and sifting,and the pearled grains were weighed be- fore the next abrasion.The milling conditions applied were predetermined to remove bran material while minimizing starch loss to the fines.The number of abrasions applied on triticale and rye was designed to give a final accumulat

34、ed grain mass removal rate of12%.2.3. Chemical analysisSamples of whole grain,pearled grain and abraded fine fractions were analysed for moisture and starch contents.Fermentation stillages were measured by the standard AACC procedures for moisture,crude protein,crude fat,and ash and the AOAC method

35、for total dietary fibre.Protein contents of the samples were calculated using the nitrogen-to-protein conversion factor of 5.7,based on the recommendation of Sosulski and Imafidon.Starch was measured as glucose after hydrolysis with -amylase and amyloglucosidase.2.4. Enzymes, reagents, and chemicals

36、A powdered fungal enzyme preparation from Tri - choderma 6iride, Roxazyme G, was provided by Hoff- mann-La Roche (Mississauga,ON,Canada). The Roxazyme G contained cellulase activity of 8000 IU/g and xylanase activity of 43 350 IU/g . 2.5. FermentationThe fermentors were connected to a D3-G water bat

37、h circulator,and equilibrated to 30°C for 15 min.Either 5 ml of sterile distilled water, or 5 ml of filter-sterilized urea solution,a common and effective yeast food, were added to each fermentor to provide a final concentration of 0 or 16 mm,respectively.Then,8 ml of Allcoholase II preparation

38、 was added per kilogram of pearled grain mashed to saccharify the dextrins to fermentable sugars.After 30 min, the temperature of the fermentor was lowered and maintained at 20°C throughout the fermentation, and the fermentor was inoculated with 6 ml of active dry yeast inocula (inoculated at a

39、pproximately 30 35 million cells per gram of mash).The fermentations were monitored until all dissolved solids were consumed.3.Results and conclusion3.1.Effect of grain pearling and VHG technology on ethanol yield, fermentation efficiency and ethanol concentrationFermentation results from the curren

40、t study were compared with those from whole grain normal gravity fermentations and whole grain VHG fermentations. VHG fermentations and grain pearling did not result in significant changes in average fermentation efficiencies.The average fermentation efficiencies obtained from the three studies were

41、 between 90.0 and 91.4%. Urea supplementation led to lower fermentation efficiencies,as more sugars were used for cell growth, a trade-off in exchange for faster fermentation rates and reduced fermentation cycles. Such decreases in fermentation efficiencies were more significant when less nutrient w

42、ere present in the fermentation media. Pearling removed part of the grain outer layers and therefore pearled grain may have deficiencies in some minerals, vitamins, and amino acids which normally promote fermentation.Coupled with the application of VHG, pearled grains showed significant declines in

43、fermentation efficiencies when urea was added.Such declines might be corrected if the concentrations of urea supplementation were reduced from the current 16 mm to lower levels.The application of VHG technology led to average ethanol yields per tonne of feedstock (dry basis) of 421 and 417 l for who

44、le grain normal gravity and VHG fermentations,respectively.The average ethanol yield per tonne of feedstock for pearled grain using VHG fermentation was455 l.Therefore, the ethanol per tonne of feedstock was increased by 8.5%, due to concentrated starch contents in the pearled grains. This increase

45、was proportional to the increase in starch content in the feedstock.However,increases in ethanol production were actually much greater when they were calculated on a fermentation volume basis.The VHG technology and grain pearling showed great benefits for increasing final ethanol concentration in th

46、e fermentation vessels. With normal gravity fermentation, the final ethanol concentrations were between 9.5 and 10.0% (v/v).VHG technology at the level applied here raised sugar concentrations by 33% as a result of reduction of water use during mashing and fermentation.The final ethanol concentratio

47、ns were thus increased to 12·9 14·8% (v/v).This is an average increase of 47%. Grain pearling increased the starch content in the fermentation feedstock by 7 8%. Cou- pled with the VHG technology,the final ethanol concentrations were further increased to 15.7 16.1% (v/v). This implied that

48、 the combined use of grain pearling and VHG technologies would increase ethanol production by an average of 64%,for a given fermentor volume, compared with normal gravity fermentations. Although normal gravity fermentations with low levels of sugar concentration would have short fermentation cycles,

49、 recent studies (unpublished results) on optimization of fermentation process showed that VHG gravity fermentation cycles could be significantly reduced by applying relatively high fermentation temperatures (25 30°C).VHG fermentation technology that reduces about 33% of water during mashing and

50、 fermentation process would lead to a significant saving in energy consump- tion for mash heating, cooling and ethanol distillation. Grain pearling removes a significant part of grain solids which results in reduced energy input and less fermentation stillages.The combined savings in energy expenses

51、, and increases in ethanol production,would raise fuel alcohol plant efficiency andcompetitiveness.3.2. Chemical composition of stillageStillage samples(spent grain) from rye and triticale fermentations contained mostly protein and total dietary fibre (TDF).There were few differences between stillag

52、e composition obtained from whole grain normal gravity and VHG fermentation.Protein and TDF each accounted for approx. 30% of stillages, on a dry basis. The remainder of the stillages were ash,fat, residual recalcitrant starch, yeast cells and nonvolatile fermentation by-products.The fact that stillages from rye were lower in protein content was due to the initial lower protein content in rye grain.Lower than expected TDF content in rye stillages

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论