辽宁省大连市开发区2015-2016学年九年级数学上学期第一次月考试题(含解析)-新人教版_第1页
辽宁省大连市开发区2015-2016学年九年级数学上学期第一次月考试题(含解析)-新人教版_第2页
辽宁省大连市开发区2015-2016学年九年级数学上学期第一次月考试题(含解析)-新人教版_第3页
辽宁省大连市开发区2015-2016学年九年级数学上学期第一次月考试题(含解析)-新人教版_第4页
辽宁省大连市开发区2015-2016学年九年级数学上学期第一次月考试题(含解析)-新人教版_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上辽宁省大连市开发区2015-2016学年九年级数学上学期第一次月考试题一、选择题(本题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项正确)1一元二次方程(x4)2=2x3化为一般式是()Ax210x+13=0Bx210x+19=0Cx26x+13=0Dx26x+19=02已知1是关于x的一元二次方程(m1)x2+x+1=0的一个根,则m的值是()A1B1C0D无法确定3方程x(x+3)=x+3的解为()Ax1=0,x2=3Bx1=1,x2=3Cx1=0,x2=3Dx1=1,x2=34用配方法解一元二次方程x26x7=0,则方程变形为()A2=4

2、3C2=165将抛物线y=x2先向左平移1个单位,再向下平移2个单位得到的抛物线是()Ay=(x+1)22By=(x1)2+2Cy=(x1)22Dy=(x+1)2+26若二次函数y=ax2+bx+a22(a,b为常数)的图象如下,则a的值为()A2BC1D7抛物线y=x26x+5的顶点位于()A第一象限B第二象限C第三象限D第四象限8如图,抛物线y=x24x+c(c0)与x轴交于点A和点B(n,0),点A在点B的左侧,则AB的长是()A42nB4+2nC82nD8+2n二、填空题(本题共8小题,每小题3分,共24分)9已知关于x的一元二次方程x2+2x+m=0有实数根,则m的取值范围是10已知

3、一元二次方程x2+px+3=0的一个根为3,则p=11已知三角形的两边长分别是4和7,第三边是方程x216x+55=0的根,则第三边长是12要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,设比赛组织者应邀请x个队参赛,则x满足的关系式为13抛物线y=2x25x+1与x轴的公共点的个数是14二次函数y=x22x的图象上有A(x1,y1)、B(x2,y2)两点,若1x1x2,则y1与y2的大小关系是15如图,抛物线y=ax2+bx+c(a0)的对称轴是直线x=1,且经过点P(3,0),则ab+c的值为16如图,已知直线y=x+3分别交x

4、轴、y轴于点A、B,P是抛物线y=x2+2x+5上的一个动点,其横坐标为a,过点P且平行于y轴的直线交直线y=x+3于点Q,则当PQ=BQ时,a的值是三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)17解方程:2x24x5=0(用公式法)18一个直角三角形的两条直角边的和是14cm,面积为24cm2,求两条直角边的长19某工厂在两年内机床年产量由400台提高到900台,求机床产量的年平均增长率20一个二次函数的图象经过(2,5),(2,3),(4,5)三点(1)求这个二次函数的解析式;(2)写出这个二次函数图象的开口方向、对称轴和顶点坐标;(3)写出这个二次函数

5、图象的与坐标轴的交点坐标四、解答题(本题共6小题,其中21、22题各9分,23题10分,共28分)21如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0),B(3,2)(1)求m的值和抛物线的解析式;(2)求不等式x2+bx+cx+m的解集(直接写出答案)22商场某种新商品每件进价是120元,在试销期间发现,当每件商品售价为130元时,每天可销售70件,当每件商品售价高于130元时,每涨价1元,日销售量就减少1件据此规律,请回答:(1)当每件商品售价定为170元时,每天可销售多少件商品商场获得的日盈利是多少?(2)在上述条件不变,商品销售正常的情况下,每件商品的销售价定为多少元时

6、,商场日盈利可达到1600元?(提示:盈利=售价进价)23如图,抛物线y=ax2+bx4a经过A(1,0)、C(0,4)两点,与x轴交于另一点B(1)求抛物线的解析式;(2)已知点D(m,m+1)在第一象限的抛物线上,求点D关于直线BC对称的点的坐标24某企业加工一台大型机械设备润滑用油90千克,用油的重复利用率为60%,按此计算,加工一台大型机械设备的实际耗油量为36千克通过技术革新后,不仅降低了润滑用油量,同时也提高了用油的重复利用率,并且发现润滑用油量每减少1千克,用油量的重复利用率增加1.6%,这样加工一台大型机械设备的实际耗油量下降到12千克,问技术革新后,加工一台大型机械设备润滑用

7、油量是多少千克?用油的重复利用率是多少?25如图,抛物线y=x2+bx2与x轴交于A,B两点,与y轴交于C点,且A(1,0)(1)求抛物线的解析式及顶点D的坐标;(2)判断ABC的形状,证明你的结论;(3)点M(m,0)是x轴上的一个动点,当MC+MD的值最小时,求m的值26如图,在平面直角坐标系中,O是坐标原点,矩形OABC的顶点A(,0),C(0,1),AOC=30°,将AOC沿AC翻折得APC(1)求点P的坐标;(2)若抛物线y=x2+bx+c经过P、A两点,试判断点C是否在该抛物线上,并说明理由;(3)设(2)中的抛物线与矩形0ABC的边BC交于点D,与x交于另一点E,点M在

8、x轴上运动,N在y轴上运动,若以点E、M、D、N为顶点的四边形是平行四边形,试求点M、N的坐标2015-2016学年辽宁省大连市开发区九年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项正确)1一元二次方程(x4)2=2x3化为一般式是()Ax210x+13=0Bx210x+19=0Cx26x+13=0Dx26x+19=0【考点】一元二次方程的一般形式【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a0),首先把方程左边的相乘,再移项使方程右边变为0,然后合并同类项即可【解答】解:(x4

9、)2=2x3,移项去括号得:x28x+162x+3=0,整理可得:x210x+19=0,故一元二次方程(x4)2=2x3化为一般式是:x210x+19=0故选B【点评】此题主要考查了一元二次方程的一般形式,正确合并同类项是解题关键2已知1是关于x的一元二次方程(m1)x2+x+1=0的一个根,则m的值是()A1B1C0D无法确定【考点】一元二次方程的解;一元二次方程的定义【分析】把x=1代入方程,即可得到一个关于m的方程,即可求解【解答】解:根据题意得:(m1)+1+1=0,解得:m=1故选B【点评】本题主要考查了方程的解的定义,正确理解定义是关键3方程x(x+3)=x+3的解为()Ax1=0

10、,x2=3Bx1=1,x2=3Cx1=0,x2=3Dx1=1,x2=3【考点】解一元二次方程-因式分解法【专题】计算题【分析】方程移项后,提取公因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解【解答】解:方程x(x+3)=x+3,变形得:x(x+3)(x+3)=0,即(x1)(x+3)=0,解得:x1=1,x2=3故选B【点评】此题考查了解一元二次方程因式分解法,熟练掌握因式分解的方法是解本题的关键4用配方法解一元二次方程x26x7=0,则方程变形为()A2=43C2=16【考点】解一元二次方程-配方法【专题】配方法【分析】首先进行移项变形成x26x

11、=7,两边同时加上9,则左边是一个完全平方式,右边是一个常数,即可完成配方【解答】解:x26x7=0,x26x=7,x26x+9=7+9,(x3)2=16故选C【点评】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数5将抛物线y=x2先向左平移1个单位,再向下平移2个单位得到的抛物线是()Ay=(x+1)22By=(x1)2+2Cy=(x1)22Dy=(x+1)2+2【考点】二次函数图象与几何变换【分析】根据“左加右减,上加下减”平移规律写出平

12、移后抛物线的解析式即可【解答】解:抛物线y=x2先向左平移1个单位,再向下平移2个单位得到的抛物线是:y=(x+1)22故选:A【点评】主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式6若二次函数y=ax2+bx+a22(a,b为常数)的图象如下,则a的值为()A2BC1D【考点】二次函数图象与系数的关系【专题】压轴题【分析】由抛物线与y轴的交点判断c与0的关系,进而得出a22的值,然后求出a值,再根据开口方向选择正确答案【解答】解:由图象可知:抛物线与y轴的交于原点,所以,a22=0,解得a=±,由抛物线的开口向上所以a0,a=舍

13、去,即a=故选D【点评】二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定7抛物线y=x26x+5的顶点位于()A第一象限B第二象限C第三象限D第四象限【考点】二次函数的性质【分析】利用配方法把抛物线的一般式写成顶点式,求顶点坐标;或者用顶点坐标公式求解【解答】解:y=x26x+5=x26x+99+5=(x3)24,抛物线y=x26x+5的顶点坐标是(3,4),在第四象限故选:D【点评】此题考查了二次函数的性质,利用配方法求顶点坐标是常用的一种方法8如图,抛物线y=x24x+c(c0)与x轴交于点A和点B(n,0),点A在点B的左侧,则A

14、B的长是()A42nB4+2nC82nD8+2n【考点】抛物线与x轴的交点【分析】利用根与系数的关系可得:x1+x2=4,x1x2=c,所以(x1x2)2=(x1+x2)24x1x2=16+4c,AB的长度即两个根的差的绝对值,利用以上条件代入化简即可得到AB的长【解答】解:设方程0=x24x+c的两个根为x1和x2,x1+x2=4,x1x2=c,(x1x2)2=(x1+x2)24x1x2=16+4c,AB的长度即两个根的差的绝对值,即:,又x2=n,把x2=n代入方程有:c=n2+4n,16+4c=16+16n+4n2=4(n+2)2,=2n+4,故选B【点评】本题主要考查了二次函数的性质,

15、一元二次方程根与系数的关系以及二次函数y=ax2+bx+c(a,b,c是常数,a0)的交点与一元二次方程ax2+bx+c=0根之间的关系二、填空题(本题共8小题,每小题3分,共24分)9已知关于x的一元二次方程x2+2x+m=0有实数根,则m的取值范围是m1【考点】根的判别式【专题】探究型【分析】先根据一元二次方程x2+2x+m=0得出a、b、c的值,再根据方程有实数根列出关于m的不等式,求出m的取值范围即可【解答】解:由一元二次方程x2+2x+m=0可知a=1,b=2,c=m,方程有实数根,=224m0,解得m1故答案为:m1【点评】本题考查的是一元二次方程根的判别式,根据题意列出关于m的不

16、等式是解答此题的关键10已知一元二次方程x2+px+3=0的一个根为3,则p=4【考点】一元二次方程的解【分析】已知一元二次方程x2+px+3=0的一个根为3,因而把x=3代入方程即可求得p的值【解答】解:把x=3代入方程可得:(3)23p+3=0,解得p=4故填:4【点评】本题主要考查了方程的解的定义,把求未知系数的问题转化为方程求解的问题11已知三角形的两边长分别是4和7,第三边是方程x216x+55=0的根,则第三边长是5【考点】解一元二次方程-因式分解法;三角形三边关系【专题】计算题【分析】利用因式分解法解方程得到x1=5,x2=11,然后利用三角形三边的关系即可得到第三边为5【解答】

17、解:x216x+55=0,(x5)(x11)=0,所以x1=5,x2=11,又因为三角形的两边长分别是4和7,所以第三边为5故答案为5【点评】本题考查了解一元二次方程因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想)也考查了三角形三边的关系12要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,设比赛组织者应邀请x个队参赛,则x满足的关系式为x(x1)=

18、4×7【考点】由实际问题抽象出一元二次方程【分析】关系式为:球队总数×每支球队需赛的场数÷2=4×7,把相关数值代入即可【解答】解:每支球队都需要与其他球队赛(x1)场,但2队之间只有1场比赛,所以可列方程为: x(x1)=4×7故答案为: x(x1)=4×7【点评】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以213抛物线y=2x25x+1与x轴的公共点的个数是两个【考点】抛物线与x轴的交点【分析】抛物线与x的交点个数,即为抛物线y=2x25x+1与x

19、轴的公共点的个数,因此只要算出b24ac的值就可以判断出与x轴的交点个数【解答】解:y=2x25x+1,b24ac=(5)24×2×1=170抛物线y=2x25x+1与x轴有两个交点即:抛物线y=2x25x+1与x轴的公共点的个数是两个故答案为:两个【点评】本题考查二次函数与x轴的交点问题,关键是算出二次函数中b24ac的值14二次函数y=x22x的图象上有A(x1,y1)、B(x2,y2)两点,若1x1x2,则y1与y2的大小关系是y1y2【考点】二次函数图象与几何变换【分析】先根据函数解析式确定出对称轴为直线x=1,再根据二次函数的增减性,x1时,y随x的增大而减小解答

20、【解答】解:y=x22x=(x1)21,二次函数图象的对称轴为直线x=1,1x1x2,y1y2故答案为:y1y2【点评】本题考查了二次函数图象上点的坐标特征,主要利用了二次函数的增减性,求出对称轴解析式是解题的关键15如图,抛物线y=ax2+bx+c(a0)的对称轴是直线x=1,且经过点P(3,0),则ab+c的值为0【考点】二次函数图象与系数的关系【分析】根据二次函数的对称性求出抛物线y=ax2+bx+c与x轴的另一交点为(1,0),由此求出ab+c的值【解答】解:抛物线y=ax2+bx+c经过点A(3,0),对称轴是直线x=1,y=ax2+bx+c与x轴的另一交点为(1,0),ab+c=0

21、故答案为:0【点评】本题考查了二次函数的性质,根据二次函数的对称性求出抛物线y=ax2+bx+c与x轴的另一交点为(1,0)是解题的关键16如图,已知直线y=x+3分别交x轴、y轴于点A、B,P是抛物线y=x2+2x+5上的一个动点,其横坐标为a,过点P且平行于y轴的直线交直线y=x+3于点Q,则当PQ=BQ时,a的值是4+2或42或4或1【考点】二次函数综合题【专题】综合题【分析】先利用一次函数解析式求出B(0,3),再根据二次函数图象上点的坐标特征和一次函数图象上点的坐标特征,设P(a, a2+2a+5),Q(a, a+3),则可利用两点间的距离公式得到PQ=|a2a2|,BQ=|a|,然

22、后利用PQ=BQ得到|a2a2|=|a|,讨论: a2a2=或a2a2=a,然后分别解一元二次方程即可得到a的值【解答】解:当x=0时,y=x+3=3,则B(0,3),点P的横坐标为a,PQy轴,P(a, a2+2a+5),Q(a, a+3),PQ=|a2+2a+5(a+3|=|a2+a+2|=|a2a2|,BQ=|a|,PQ=BQ,|a2a2|=|a|,当a2a2=a,整理得a28a4=0,解得a1=4+2,a2=42,当a2a2=a,整理得a23a4=0,解得a1=4,a2=1,综上所述,a的值为4+2或42或4或1故答案为4+2或42或4或1【点评】本题考查了二次函数的综合题:熟练掌握二

23、次函数图象上点的坐标特征和一次函数图象上点的坐标特征;理解坐标与图形的性质,记住两点间的距离公式;会解一元二次方程三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)17解方程:2x24x5=0(用公式法)【考点】解一元二次方程-公式法【分析】求出b24ac的值,再代入公式求出即可【解答】解:2x24x5=0,b24ac=(4)24×2×(5)=56,x=,x1=,x2=【点评】本题考查了解一元二次方程的应用,主要考查学生的解一元二次方程的能力,难度适中18一个直角三角形的两条直角边的和是14cm,面积为24cm2,求两条直角边的长【考点】一元二

24、次方程的应用;勾股定理【分析】设其中一条直角边长为未知数,表示出另一直角边长,根据面积为24列式求值即可【解答】解:设其中一条直角边长为xcm,则另一直角边长为(14x)cm,×x(14x)=24,解得x1=6,x2=8,当x1=6时,14x=8;当x2=8时,14x=6;答:两条直角边的长分别为6,8【点评】考查一元二次方程的应用;用到的知识点为:直角三角形的面积=两直角边积的一半19某工厂在两年内机床年产量由400台提高到900台,求机床产量的年平均增长率【考点】一元二次方程的应用【专题】增长率问题【分析】利用增长后的量=增长前的量×(1+增长率),设机床产量的年平均增

25、长率为x,根据“某工厂在两年内机床年产量由400台提高到900台”,即可得出方程【解答】解:设机床产量的年平均增长率为x,依题意有400(1+x)2=900,解得:x1=0.5=50%,x2=2.5(舍去)答:机床产量的年平均增长率为50%【点评】此题考查一元二次方程的实际运用,掌握复利公式:“a(1+x%)n=b”是解决本题的关键20一个二次函数的图象经过(2,5),(2,3),(4,5)三点(1)求这个二次函数的解析式;(2)写出这个二次函数图象的开口方向、对称轴和顶点坐标;(3)写出这个二次函数图象的与坐标轴的交点坐标【考点】待定系数法求二次函数解析式;二次函数的性质【专题】计算题【分析

26、】(1)设一般式y=ax2+bx+c,然后把三个点的坐标代入得到关于a、b、c的方程组,然后解方程组即可;(2)先把(1)中解析式配成顶点式,然后根据二次函数的性质求解;(3)分别计算函数值为0所对应的自变量的值和自变量为0时所对应的函数值,即可得到二次函数图象的与坐标轴的交点坐标【解答】解:(1)设抛物线解析式为y=ax2+bx+c,根据题意得,解得所以抛物线解析式为y=x22x3;(2)y=(x1)24,这个二次函数图象的开口向上,对称轴为直线x=1,顶点坐标为(1,4);(3)当x=0时,y=x22x3=3,则二次函数与y轴的交点坐标为(0,3);当y=0时,x22x3=0,解得x1=1

27、,x2=3则二次函数与x轴的交点坐标为(1,0)和(3,0)【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解也考查了二次函数的性质四、解答题(本题共6小题,其中21、22题各9分,23题10分,共28分)21如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0),B(3,2)(1)求m的

28、值和抛物线的解析式;(2)求不等式x2+bx+cx+m的解集(直接写出答案)【考点】二次函数与不等式(组);待定系数法求二次函数解析式【分析】(1)分别把点A(1,0),B(3,2)代入直线y=x+m和抛物线y=x2+bx+c,利用待定系数法解得y=x1,y=x23x+2;(2)根据题意列出不等式,直接解二元一次不等式即可,或者根据图象可知,x23x+2x1的图象上x的范围是x1或x3【解答】解:(1)把点A(1,0),B(3,2)分别代入直线y=x+m和抛物线y=x2+bx+c得:0=1+m,m=1,b=3,c=2,所以y=x1,y=x23x+2;(2)x23x+2x1,解得:x1或x3【点

29、评】主要考查了用待定系数法求函数解析式和二次函数的图象的性质要具备读图的能力22商场某种新商品每件进价是120元,在试销期间发现,当每件商品售价为130元时,每天可销售70件,当每件商品售价高于130元时,每涨价1元,日销售量就减少1件据此规律,请回答:(1)当每件商品售价定为170元时,每天可销售多少件商品商场获得的日盈利是多少?(2)在上述条件不变,商品销售正常的情况下,每件商品的销售价定为多少元时,商场日盈利可达到1600元?(提示:盈利=售价进价)【考点】一元二次方程的应用【专题】销售问题【分析】(1)首先求出每天可销售商品数量,然后可求出日盈利(2)设商场日盈利达到1600元时,每件

30、商品售价为x元,根据每件商品的盈利×销售的件数=商场的日盈利,列方程求解即可【解答】解:(1)当每件商品售价为170元时,比每件商品售价130元高出40元,即170130=40(元),(1分)则每天可销售商品30件,即7040=30(件),(2分)商场可获日盈利为(170120)×30=1500(元)设商场日盈利达到1600元时,每件商品售价为x元,则每件商品比130元高出(x130)元,每件可盈利(x120)元(4分)每日销售商品为70(x130)=200x(件)(5分)依题意得方程(200x)(x120)=1600(6分)整理,得x2320x+25600=0,即(x16

31、0)2=0(7分)解得x=160(9分)答:每件商品售价为160元时,商场日盈利达到1600元注意变化率所依据的变化规律,找出所含明显或隐含的等量关系;(2)可直接套公式:原有量×(1+增长率)n=现有量,n表示增长的次数23如图,抛物线y=ax2+bx4a经过A(1,0)、C(0,4)两点,与x轴交于另一点B(1)求抛物线的解析式;(2)已知点D(m,m+1)在第一象限的抛物线上,求点D关于直线BC对称的点的坐标【考点】待定系数法求二次函数解析式;二次函数图象上点的坐标特征;坐标与图形变化-对称【专题】压轴题【分析】(1)由于抛物线y=ax2+bx4a经过A(1,0)、C(0,4)

32、两点,利用待定系数法即可确定抛物线的解析式;(2)由于点D(m,m+1)在第一象限的抛物线上,把D的坐标代入(1)中的解析式即可求出m,然后利用对称就可以求出关于直线BC对称的点的坐标【解答】解:(1)抛物线y=ax2+bx4a经过A(1,0)、C(0,4)两点,解之得:a=1,b=3,y=x2+3x+4;(2)点D(m,m+1)在第一象限的抛物线上,把D的坐标代入(1)中的解析式得 m+1=m2+3m+4,m=3或m=1,m=3,D(3,4),y=x2+3x+4=0,x=1或x=4,B(4,0),OB=OC,OBC是等腰直角三角形,CBA=45°设点D关于直线BC的对称点为点EC(

33、0,4)CDAB,且CD=3ECB=DCB=45°E点在y轴上,且CE=CD=3OE=1E(0,1)即点D关于直线BC对称的点的坐标为(0,1);【点评】此题考查传统的待定系数求函数解析式,第二问考查点的对称问题,作合适的辅助线,根据垂直和三角形全等来求P点坐标24某企业加工一台大型机械设备润滑用油90千克,用油的重复利用率为60%,按此计算,加工一台大型机械设备的实际耗油量为36千克通过技术革新后,不仅降低了润滑用油量,同时也提高了用油的重复利用率,并且发现润滑用油量每减少1千克,用油量的重复利用率增加1.6%,这样加工一台大型机械设备的实际耗油量下降到12千克,问技术革新后,加工

34、一台大型机械设备润滑用油量是多少千克?用油的重复利用率是多少?【考点】一元二次方程的应用【分析】设乙车间加工一台大型机械设备润滑用油量为x千克,由“实际耗油量下降到12千克”列方程得x×1(90x)×1.6%60%=12,解方程求解即可【解答】解:设乙车间加工一台大型机械设备润滑用油量为x千克,由题意得:x×1(90x)×1.6%60%=12,整理得:x265x750=0,因式分解得:(x75)(x+10)=0,解得x1=75,x2=10(舍去)用油的重复利用率:(9075)×1.6%+60%=84%答:技术革新后,乙车间加工一台大型机械设备润

35、滑用油量是75千克,用油的重复利用率是84%【点评】此题考查了列一元二次方程在实际中的应用;同时考查了学生分析问题、解决问题的能力分析数量关系、探究等量关系是列方程解应用题的关键25如图,抛物线y=x2+bx2与x轴交于A,B两点,与y轴交于C点,且A(1,0)(1)求抛物线的解析式及顶点D的坐标;(2)判断ABC的形状,证明你的结论;(3)点M(m,0)是x轴上的一个动点,当MC+MD的值最小时,求m的值【考点】二次函数综合题【专题】压轴题【分析】(1)把A点的坐标代入抛物线解析式,求b的值,即可得出抛物线的解析式,根据顶点坐标公式,即可求出顶点坐标;(2)根据直角三角形的性质,推出AC2=

36、OA2+OC2=5,BC2=OC2+OB2=20,即AC2+BC2=25=AB2,即可确定ABC是直角三角形;(3)作出点C关于x轴的对称点C,则C(0,2),OC'=2连接C'D交x轴于点M,根据轴对称性及两点之间线段最短可知,MC+MD的值最小首先确定最小值,然后根据三角形相似的有关性质定理,求m的值【解答】解:(1)点A(1,0)在抛物线y=x2+bx2上,×(1 )2+b×(1)2=0,解得b=抛物线的解析式为y=x2x2y=x2x2=( x23x4 )=(x)2,顶点D的坐标为 (,)(2)当x=0时y=2,C(0,2),OC=2当y=0时, x2

37、x2=0,x1=1,x2=4,B (4,0)OA=1,OB=4,AB=5AB2=25,AC2=OA2+OC2=5,BC2=OC2+OB2=20,AC2+BC2=AB2ABC是直角三角形(3)作出点C关于x轴的对称点C,则C(0,2),OC=2,连接CD交x轴于点M,根据轴对称性及两点之间线段最短可知,MC+MD的值最小解法一:设抛物线的对称轴交x轴于点EEDy轴,OCM=EDM,COM=DEMCOMDEM,m=解法二:设直线CD的解析式为y=kx+n,则,解得:当y=0时,【点评】本题着重考查了待定系数法求二次函数解析式、直角三角形的性质及判定、轴对称性质以及相似三角形的性质,关键在于求出函数表达式,作出辅助线,找对相似三角形26如图,在平面直角坐标系中,O是坐标原点,矩形OABC的顶点A(,0),C(0,1),AOC=30°,将AOC沿AC翻折得APC(1)求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论