212离散型随机变量的分布列导学案(选修2-3)1_第1页
212离散型随机变量的分布列导学案(选修2-3)1_第2页
212离散型随机变量的分布列导学案(选修2-3)1_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2.1.2离散型随机变量的分布列导学案(理)一、教学目标1、理解离散型随机变量的分布列的意义,会求某些简单的离散型随机变量的分布列;2、掌握离散型随机变量的分布列的两个基本性质,并会用它来解决一些简单的问题3. 理解二点分布的意义.重点:离散型随机变量的分布列的意义及基本性质.难点:分布列的求法和性质的应用.二、预习自测:1. 如果离散型随机变量X的所有可能取得值为x1,x2,xn;X取每一个值xi(i=1,2,n)的概率为p1,p2,pn,则称表XP为离散型随机变量X的概率分布,或称为离散型随机变量X的分布列 2. 离散型随机变量的分布列的两个性质: ; 3.如果随机变量X的分布列为:XP其

2、中0p1,q=1-p,则称离散型随机变量X服从参数为p的二点分布。三、典例解析:例1在抛掷一枚图钉的随机试验中,令 如果针尖向上的概率为p,试写出随机变量X的概率分布。变式训练 从装有6只白球和4只红球的口袋中任取一只球,用X表示“取到的白球个数”,即求随机变量X的概率分布。例2 掷一枚骰子,所掷出的点数为随机变量X:(1)求X的分布列;(2)求“点数大于4”的概率;(3)求“点数不超过5”的概率。结论:变式训练 盒子中装有4个白球和2个黑球,现从盒中任取4个球,若X表示从盒中取出的4个球中包含的黑球数,求X的分布列.例3已知随机变量X的概率分布如下:X-1-0.501.83P0.10.20.

3、10.3a求: (1)a; (2)P(X0);(3)P(-0.5X3);(4)P(X1);(6)P(X5)变式训练 若随机变量变量X的概率分布如下: X01P9C2-C3-8C试求出C,并写出X的分布列。注意:例4 某同学向如图所示的圆形靶投掷飞镖,飞镖落在靶外的概率为0.1,落在靶内的各个点是随机的。已知圆形靶中三个圆为同心圆,半径分别为30cm,20cm,10cm,飞镖落在不同区域的环数如图。设这位同学投掷一次得到的环数为随机变量X,求X的分布列。 1098 四、小结:五、作业:课后练习A、B。2.1.2离散型随机变量的分布列当堂检测(理)高二数学组 撰稿:于军 审稿:崔素良 2009-3-141.下列表中能成为随机变量X的分布列的是 ( )X-101P0.30.40.4X123P0.40.7-0.1A BX-101P0.30.40.3X123P0.20.40.5C D2.随机变量所有可能的取值为1,2,3,4,5,且,则常数c= ,= .3.袋中有4个黑球,3个白球,2个红球,从中任取2个球,每取到一个黑球得0分,每取到一个白球得1分,每取到一个红球得2分,用表示分数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论