哈尔滨省中考语文模拟试题_第1页
哈尔滨省中考语文模拟试题_第2页
哈尔滨省中考语文模拟试题_第3页
哈尔滨省中考语文模拟试题_第4页
哈尔滨省中考语文模拟试题_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、统计学原理计算题类型分析统计学原理试题结构、题型考查内容相对稳定(五个重点章节),解题方法机械性强。能否答好计算题对考试成绩具有举足轻重的作用。下面分章总结分析。一、综合指标综合指标计算题主要是平均指标的计算。计算平均数最基本的公式是简单算术平均数公式,其他公式(加权算术平均数、简单调和平均数及加权调和平均数)都是简单算术平均数公式的变形形式。例、某生产车间40名工人日加工零件数(件)如下:30 26 42 41 36 44 40 37 43 3537 25 45 29 43 31 36 49 34 4733 43 38 42 32 25 30 46 29 3438 46 43 39 35 4

2、0 48 33 27 28要求:(1)根据以上资料分成如下几组:2530,3035,3540,4045,4550,计算出各组的频数和频率,编制次数分配表。(2)根据整理表计算工人的平均日产零件数。解:(1)所求次数分配表如下:按日加工零件数(件)所分的组各组人数(频数)频率(%)组中值xxf2530717.527519253035717.532522753540922.5375337540451127.542546754550615.0475285合计40100.0 -1510(2)【分析】平均日产零件数等于日产总件数(标志总量)与总人数(单位总量)之比,由资料可直接求得总件数与总人数,可用加

3、权算术平均数公式。所求平均日产零件数(件)为:或:。例2、已知某局20个企业的有关统计资料如下:按计划完成百分比分组(%)企业数(个)实际产值(万元)m组中值(%)x计划产值m/x90以下4688590100557951001104126105110以上7184115合计20435-试计算产值的平均计划完成程度。【分析】产值的平均计划完成程度等于实际完成数与计划数之比,资料给出了实际完成数,各组计划数并未直接给出,但各组计划数等于各组实际数与各组计划完成百分比之比求得,故可用加权调和平均数公式计算。解:产值的平均计划完成程度为:例3 、某车间有甲、乙两个生产小组,甲组平均每个工人的日产量为22

4、件,标准差为 3.5 件;乙组工人日产量资料如下:日产量(件)工人数(人)组中值xxfX2f101210131520161830192140计算乙组每个工人的平均日产量,并比较甲、乙两小组哪个组的平均日产量更有代表性?解:乙组平均日产量为(件)。 ,因V甲< V乙,故甲组的平均日产量更有代表性。注:比较两组变量平均数的代表性大小,须用变异系数(通常用标准差系数)而不能用标准差。例4 、某公司所属三个厂近两年产量完成资料如下:填出空格中的数字。上年实际产量(吨)本年计划本年实际本年计划完成程度(%)本年实际完成程度(%)产量比重产量比重甲厂乙厂丙厂90 230 1502

5、0110 237  100.7 115合计 500 498   解: 上年实际产量(吨)本年计划本年实际本年计划完成程度(%)本年实际完成程度(%)产量比重产量比重甲厂乙厂丙厂90131.323010015025020305011015123722.130.347.6110100.794.8122.2115103.0合计451.350010049810099.6110.3二、抽样估计抽样估计计算题一般步骤为三步曲:求平均误差,求极限误差,给出区间范围估计。但计算抽样平均误差时,须注意区分不同情形

6、,套用相应公式(如下表):重复抽样不重复抽样抽样平均数的抽样平均误差u x抽样成数的抽样平均误差u p上述公式一般用来估计推断在一定概率保证度下平均数或成数范围。若要求在一定概率保证度下,给出平均数或成数的区间范围,来推断抽样样本单位数至少应为多少,可用下面变形公式:重复抽样不重复抽样平均数样本单位数成数样本单位数例1、对一批成品按重复抽样方法抽选100件,其中废品4件,当概率为95.45%(t=2)时,可否认为这批产品的废品率不超过6%?【分析】本题须计算重复抽样成数的平均误差。解:n=100,p=4%,t=2, ,所求废品率范围为0.08%7.92%,可知这批产品的废品率超过6%。例2、某

7、工厂有2000个工人,用简单随机不重复方法抽取100个工人作为样本,计算出平均工资560元,标准差32.45元。要求:(1)计算抽样平均误差;(2)以95.45%(t=2) 的可靠程度估计该厂工人的月平均工资区间。【分析】本题计算的是不重复抽样平均数的平均误差。解:(1) (2)x= tx = 6.326, X±x= 560±6.326,即553.67566.33(元),有95.45% 的可靠程度保证该厂工人月平均工资在553.67566.33元之间。例3、某年级学生中按简单随机重复抽样方式抽取50名学生,对“基础会计学”课的考试成绩进行检查,得知其平均分数为75.6分,样

8、本标准差10分,试以95.45%的概率保证程度推断全年级学生考试成绩的区间范围。如果其他条件不变,将允许误差缩小一半,应抽取多少名学生?解:n = 50,=10,t = 2,即所求区间范围为72.7878.42;如果其他条件不变,允许误差缩小一半,应抽取的学生数应是:。注:在其他条件(即t与)不变的情况下,由公式易知,应抽样数与允许误差(极限误差)的平方成反比,故允许误差缩小一半,抽样数应为原来的4倍,即200名。这样可避免复杂计算。三、相关分析相关分析计算题通常为计算相关系数或配合回归方程。相关分析计算题主要是记住公式(相关系数和回归系数的计算公式)。记忆公式时,注意把握公式特征。计算公式如

9、下:, 利用变量的标准差,可由相关系数和回归系数中的一个计算另一个。计算公式为:例1、某企业各年产品总成本资料如下表所示:年份总成本(万元)20012572002262200326820042732005278试用最小平方法配合直线趋势方程,并预测2007年的总成本。(要求列表计算所需数据资料,写出公式和计算过程,结果保留两位小数。)解:列表计算所需数据资料(假设2003年时间t=0):年份t总成本yt2ty2001225745142002126212622003026800200412731273200522784556合计013381053 在t=0时, ,yc = 267.6 + 5.3

10、0t ;将t = 4代入趋势方程得,2007年总成本:yc = 267.6 + 5.30×4 = 288.8万元。例2、某部门所属20个企业全员劳动生产率(x)与销售利润(y)的调查资料经初步加工整理如下:n = 20 , x = 30.8 , y = 961.3 , x y = 1652.02 , x 2= 52.44 , y 2= 65754.65要求:(1)计算全员劳动生产率与销售利润之间的相关系数,并分析相关的密切程度和方向。(2)建立销售利润倚全员劳动生产率变化的直线回归方程。(要求写出公式和计算过程,结果保留两位小数)。解:(1)全员劳动生产率与销售利润之间的相关系数为为

11、显著正相关。(2)配合回归方程 y c = a + bx , 则 所求回归方程为 y c = 4.76 + 34.30x。例3、某地农科所经回归分析,得到某作物的亩产量(用y表示,单位为“担/亩”)与浇水量(用x表示,单位为“寸”)的直线回归方程为:yc=2.82+1.56x。又知变量x 的方差为99.75,变量y的方差为312.82要求:(1)计算浇水量为0时的亩产量;(2)计算浇水量每增加一寸时平均增加的亩产量;(3)计算浇水量与亩产量之间的相关系数,并分析相关的密切程度和方向。(要求写出公式和计算过程,结果保留两位小数)解:(1)浇水量为0时的亩产量为2.82(担/亩);(2)浇水量每增

12、加一寸时平均增加的亩产量为1.56(担/亩);(3) ,b = 1.56, , 浇水量与亩产量之间的相关系数为0.88,为高度正相关。四、指数分析区分指数,掌握公式。可用下表直观认识:分类个体指数总指数综合指数平均指数数量指标指数产量指数 产量综合指数产量加权算术平均数指数质量指标指数单位成本指数单位成本综合指数单位成本加权调和平均数指数编制质量指标综合指数以报告期(计算期)的数量指标为同度量因素;编制数量指标综合指数以基期的质量指标为同度量因素。例1、某厂生产的三种产品的有关资料如下:产品名称产 量单位成本基期报告期基期报告期甲10001200108乙5000500044.5丙1500200

13、087要求:(1)计算三种产品的单位成本总指数以及由于单位产品成本变动使总成本变动的绝对额;(2)计算三种产品的产量总指数以及由于产量变动而使总成本变动的绝对额;(3)利用指数体系分析说明总成本(相对程度和绝对额)变动情况。解:产品名 称产 量单位成本总 成 本基期报告期基期报告期q0p0q1p1q1p0甲乙丙10005000150012005000200010488 457100002000012000 96002250014000120002000016000合计-420004610048000(1) 单位成本总指数为:,由于单位产品成本平均下降3.96%,使总成本下降:;(2)产量总指数

14、为:,由于产品产量平均增加14.29%,使总成本增加:;(3) 总成本指数为:, 总成本变动绝对额:,(4)指数体系:109.76% = 96.04% ×114.29%,4100=6000-1900(5)分析说明:由于报告期单位成本比基期下降3.96%,产品产量增加14.29%,使得总成本报告期比基期增加4100,单位成本下降节约总成本1900,产量增加使总成本增加6000,两类因素共同作用的结果使总成本净增4100。例2、某商场对两类商品的收购价格和收购额资料如下:商品种类收购额(万元)收购价格基期报告期基期报告期甲1001305055乙2002406160试求收购价格总指数、收购

15、额总指数,并利用指数体系计算收购量总指数。解:收购价格总指数为 : 收购额总指数为 ,根据指数体系:收购量总指数=。五、动态数列分析动态数列计算题一般有水平分析题和速度分析题。关键是弄清有关概念和公式的区别和联系。水平分析主要是计算平均发展水平(即序时平均数),要注意区别不同情形,正确选择公式:(1)由总量指标动态数列计算序时平均数(2)由相对指标或平均指标动态数列计算序时平均数,其基本公式为:。速度分析关键是弄清有关概念和公式:定基发展速度和环比发展速度、定基增长量和环比增长量、定基增长速度和环比增长速度、平均发展速度和平均增长速度(一般用水平法即几何平均数计算)。此外作为水平指标的结合运用

16、,有时还要分析:增长1%的绝对值 = 前期水平100 。例1、某商店2000年各月末商品库存额资料如下:月份12345681112库存额605548434050456068又知1月1日商品库存额为63万元。试计算上半年、下半年和全年的平均商品库存额。解:该商店上半年平均库存额为(等间隔时点数列序时平均数用首末折半法计算): (万元)下半年平均库存额(间隔不等时点数列序时平均数):(万元)全年平均库存额:(万元)问题:(1)本例中,若将“月末”改为月初,将“1月1日”改为“7月1日”则如何计算上半年平均库存额?(2)若将月末库存额改为各月份平均库存额,并将上表作如下改变,又应如何计算?月份123456-78-101112平均库存额(万元)605548434050456068例2、据下表已有的数据资料,运用动态指标的相互关系,确定动态数列的发展水平和表中所缺的环比动态指标。并计算1981年至1985年这五年期间年平均增长量和年平均增长速度。年份总产值(万元)环比动态指标增长量发展速度(%)增长速度(%)增长1%的绝对值19817411982591983115.619841985112.79.9619861

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论