版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、线面角的三种求法1直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。例1 ( 如图1 )四面体ABCS中,SA,SB,SC 两两垂直,SBA=45°, SBC=60°, M 为 AB的中点,求(1)BC与平面SAB所成的角。(2)SC与平面ABC所成的角。解:(1) SCSB,SCSA, 图1SC平面SAB 故 SB是斜线BC 在平面SAB上的射影, SBC是直线BC与平面SAB所成的角为60°。(2) 连结SM,CM,则SM
2、AB,又SCAB,AB平面SCM,面ABC面SCM过S作SHCM于H, 则SH平面ABCCH即为 SC 在面ABC内的射影。 SCH 为SC与平面ABC所成的角。 sin SCH=SHSCSC与平面ABC所成的角的正弦值为77(“垂线”是相对的,SC是面 SAB的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。)2. 利用公式sin=h其中是斜线与平面所成的角, h是 垂线段的长,是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的
3、长。例2 ( 如图2) 长方体ABCD-A1B1C1D1 , AB=3 ,BC=2, A1A= 4 ,求AB与面 AB1C1D 所成的角的正弦值。解:设点 B 到AB1C1D的距离为h,VBAB1C1=VABB1C113 SAB1C1·h= 13 SBB1C1·AB,易得h=125 设AB 与 面 A B1C1D 所成的角为,则sin=hAB=45 图23. 利用公式cos=cos1·cos2 已知,如图,是平面的斜线,是斜足,垂直于平面,为垂足,则直线是斜线在平面内的射影。设是平面内的任意一条直线,且,垂足为,又设与所成角为,与所成角为,与所成角为,则易知:,又
4、,可以得到:,注意:易得: 又即可得:则可以得到:平面的斜线和它在平面内的射影所成角,是这条斜线和这个平面内的任一条直线所成角中最小的角;(最小角定理)例3(如图4) 已知直线OA,OB,OC 两两所成的角为60°, ,求直线OA 与 面OBC所成的角的余弦值。解:AOB=AOC OA 在面OBC 内的射影在BOC 的平分线OD上,则AOD即为OA与面OBC所成的角,可知 DOC=30° ,cosAOC=cosAOD·cosDOC cos60°=cosAOD·cos30° cosAOD= 33 OA 与 面OBC所成的角的余弦值为33
5、。 图4练习如图,在正方体中,求面对角线与对角面所成的角。解(法一)连结与交于,连结,平面,是与对角面所成的角,在中,(法二)由法一得是与对角面所成的角,又,【基础知识精讲】1.直线和平面的位置关系一条直线和一个平面的位置关系有且只有如下三种关系:(1)直线在平面内直线上的所有点在平面内,根据公理1,如果直线上有两个点在平面内,那么这条直线上所有点都在这个平面内.直线a在平面内,记作a.(2)直线和平面相交直线和平面有且只有一个公共点.记作aA(3)直线和平面平行如果一条直线和一个平面没有公共点,那么这条直线和这个平面平行.记作a.直线和平面相交或平行两种情况统称直线在平面外,记作a.2.直线
6、和平面平行的判定判定 如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行.(简记“线线平行,则线面平行”)即 ab,a,ba证明 直线和平面平行的方法有:依定义采用反证法利用线面平行的判定定理面面平行的性质定理也可证明3.直线和平面平行的性质定理性质 如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行(简记为“线面平行,线线平行”).即 a,a,bab.这为证线线平行积累了方法:排除异面与相交 公理4
7、60; 线面平行的性质定理 【重点难点解析】本节重点是直线与平面的三种位置关系,直线和平面平行的判定和性质,难点是直线和平面平行的性质的应用.例1 如图,ABCD和ABEF均为平行四边形,M为对角线AC上的一点,N为对角线FB上的一点,且有AMFNACBF,求证:MN平面CBE.分析:欲证MN平面CBE,当然还是需要证明MN平行于平面CBE内的一条直线才行.题目上所给的是线段成比例的关系,因此本题必须通过三角形相似,由比例关系的变通,才能达到“线线平行”到“线面平行”的转化.证:连AN并延长交BE的延长线于P. BEAF,
8、0; BNPFNA. ,则.即 .又 , . MNCP,CP平面CBE. MN平面CBE. 例2 一直线分别平行于两个相交平面,则这条直线与它们的交线平行.已知:a,l,l.求证:la.分析:由线面平行推出线线平行,再由线线平行推出线面平行,反复应用线面平行的判定和性质.证明:过l作平面交于b.l,由性质定理知lb.过l作平面交于c.l,由性质定理知lc. bc,显然c.
9、60;b. 又 b,=a, ba. 又 lb. la.评注:本题在证明过程中注意文字语言、符号语言,图形语言的转换和使用. 例3 如图,在正四棱锥SABCD中,P在SC上,Q在SB上,R在SD上,且SPPC12,SQSB23,SRRD21.求证:SA平面PQR.分析:根据直线和平面平行的判定定理,必须在平面PQR内找一条直线与AS平行即可.证:连AC、BD,设交于O,连SO,连RQ交SO于M,取SC中点N,连ON,那么ONSA.RQBD而
10、60; PMONSAON.SAPM,PM平面PQR SA平面PQR.评析:利用平几中的平行线截比例线段定理.三角形的中位线性质等知识促成“线线平行”向“线面平行”的转化. 例4 证明:过平面上一点而与这平面的一条平行线平行的直线,在这平面上.证明 如图,设直线a平面,点A,A直线b,ba,欲证b.事实上,ba,可确定平面,与有公共点A,B交于过A的直线c,a,ac,从而在上有三条直线,其中b、c均过点A且都与a平行.于是b、c重合,即b. 【难题巧解点拨】例1 S是空间四边形A
11、BCD的对角线BD上任意一点,E、F分别在AD、CD上,且AEADCFCD,BE与AS相交于R,BF与SC相交于Q.求证:EFRQ.证 在ADC中,因AEADCFCD,故EFAC,而AC平面ACS,故EF平面ACS.而RQ平面ACS平面RQEF,故EFRQ(线面平行性质定理). 例2 已知正方体ABCDABCD中,面对角线AB、BC上分别有两点E、F且BECF求证:EF平面AC.分析 如图,欲证EF平面AC,可证与平面AC内的一条直线平行,也可以证明EF所在平面与平面AC平行.证法1 过E、F分别
12、做AB、BC的垂线EM、FN交AB、BC于M、N,连接MNBB平面AC BBAB,BBBCEMAB,FNBCEMFN,ABBC,BECFAEBF又BABCBC45°RtAMERtBNFEMFN四边形MNFE是平行四边形EFMN又MN平面ACEF平面AC证法2 过E作EGAB交BB于G,连GFBECF,BACB FGBCBC又EGFGG,ABBCB平面EFG平面AC又EF平面EFGEF平面AC 例3 如图,四边形EFGH为四面体ABCD的一个截面,若截面为平行四边形
13、,求证:(1)AB平面EFGH;(2)CD平面EFGH证明:(1)EFGH为平行四边形,EFHG,HG平面ABD,EF平面ABD.EF平面ABC,平面ABD平面ABCAB.EFAB,AB平面EFGH.(2)同理可证:CDEH,CD平面EFGH.评析:由线线平行线面平行线线平行. 【课本难题解答】1.求证:如果两条平行线中的一条和一个平面相交,那么另一条也和这个平面相交.已知:ab,aA,求证:b和相交.证明:假设b或b.若b,ba,a.这与aA矛盾,b不成立.若b,设过a、b的平面与交于c.b,bc,又ab aca这与aA矛盾.b不成立.b与相交.2.求证:如果
14、两个相交平面分别经过两条平行直线中的一条,那么它们的交线和这条直线平行.已知:ab,a,b,c.求证:cab 【命题趋势分析】本节主要掌握直线和平面的位置关系的判定,直线与平面平行的证明与应用,它是高考中常考的内容,难度适中,因此学习好本节内容至关重要. 【典型热点考题】例1 在下列命题中,真命题是( )A.若直线m、n都平行平面,则mn;B.设l是直二面角,若直线ml,则mn,m;C.若直线m、n在平面内的射影是一个点和一条直线,且mn,则n在内或n与平行;D.设m、n是异面直线,若m和平面平行,则n与相
15、交.解 对于直线的平行有传递性,而两直线与平面的平行没有传递性故A不正确;平面与平面垂直可得出线面垂直,要一直线在一平面内且垂直于交线,而B中m不一定在内,故不正确;对D来说存在平面同时和两异面直线平行,故不正确;应选C. 例2 设a、b是两条异面直线,在下列命题中正确的是( )A.有且仅有一条直线与a、b都垂直B.有一平面与a、b都垂直C.过直线a有且仅有一平面与b平行D.过空间中任一点必可作一条直线与a、b都相交解 因为与异面直线a、b的公垂线平行的直线有无数条,所以A不对;若有平面与a、b都垂直,则ab不可能,所以B不对.若空间的一点与直线a(或b)确定的平面与另一条直线b(或a)平行,则过点与a相交的直线必在这个平面内,它不可能再与另一条直线相交,所以D不对,故选C. 例3 三个平面两两相交得三条交线,若有两条相交,则第三条必过交点;若有两条平行,则第三条必与之平行.已知
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 冷冻―转轮联合式除湿机的研究与应用
- 初中数学教师个人具体工作总结模板计划模板
- 2024护理工作计划范本
- 三年级上学期语文工作计划
- 幼儿园德育工作计划格式
- 办公室内勤工作计划
- 五年级美术教学计划范文
- 政治下学期教学计划范文
- 初中信息工作计划
- 投资公司个人月工作总结与下月计划
- 载货汽车总布置设计规范
- 资源与运营管理考试题库
- 引水冲污治理苏州的水环境(一)
- 小学生拼音格(可直接打印)
- 建筑施工坍塌事故预防措施
- 数电课程设计出租车计价器讲解
- 国际学术会议海报模板30-academic conference poster model
- 案例二-ARMA模型建模与预测指导
- 完整版场记单模板
- 实木家具工艺标准(全流程)
- 高一语文必修一4篇古文 词类活用(课堂PPT)
评论
0/150
提交评论