下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第一讲:立体几何中的向量方法利用空间向量求异面直线所成的角大家知道,立体几何是高中数学学习的一个难点,以往学生学习立体几何时,主要采取“形到形”的综合推理方法,即根据题设条件,将空间图形转化为平面图形,再由线线,线面等关系确定结果,这种方法没有一般规律可循,对人的智力形成极大的挑战,技巧性较强,致使大多数学生都感到束手无策。高中新教材中,向量知识的引入,为学生解决立体几何问题提供了一个有效的工具。它能利用代数方法解决立体几何问题,体现了数形结合的思想。并且引入向量,对于某些立体几何问题提供通法,避免了传统立体几何中的技巧性问题,因此降低了学生学习的难度,减轻了学生学习的负担,体现了新课程理念。
2、为适应高中数学教材改革的需要,需要研究用向量法解决立体几何的各种问题。本文举例说明如何用向量法解决立体几何的空间角问题。以此强化向量的应用价值,激发学生学习向量的兴趣,从而达到提高学生解题能力的目的。利用向量法求空间角,不需要繁杂的推理,只需要将几何问题转化为向量的代数运算,方便快捷。空间角主要包括线线角、线面角和二面角,下面对线线角的求法进行总结。教学目标1.使学生学会求异面直线所成的角的向量方法;2.使学生能够应用向量方法解决一些简单的立体几何问题;3.使学生的分析与推理能力和空间想象能力得到提高.教学重点求解异面直线所成的角的向量法.教学难点 求解异面直线所成的角的向量法.教学过程、复习
3、回顾一、回顾有关知识: 1、两异直线所成的角:(范围:)(1)定义:过空间任意一点o分别作异面直线a与b的平行线a´与b´,那么直线a´与b´ 所成的锐角或直角,叫做异面直线a与b 所成的角.(2)用向量法求异面直线所成角,设两异面直线a、b的方向向量分别为和,abO问题1: 当与的夹角不大于90°时,异面直线a、b 所成的角与 和 的夹角的关系? 问题 2:与的夹角大于90°时,异面直线a、b 所成的角与 和的夹角的关系? 两向量数量积的定义:两向量夹角公式:结论:异面直线a、b所成的角的余弦值为2、用空间向量解决立体几何问题的“三
4、步曲”:(1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;(化为向量问题)(2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;(进行向量运算)(3)把向量的运算结果“翻译”成相应的几何意义。(回到图形)、典例分析与练习思考:在正方体中,若与分别为、的四等分点,求异面直线与的夹角余弦值?(1)方法总结:几何法;向量法(2)与相等吗?(3)空间向量的夹角与异面直线的夹角有什么区别?例1 如图,正三棱柱的底面边长为,侧棱长为,求和所成的角.ABCA1B1C1xyZD分析:建立空间直角坐标系,转化为向量与向量的夹角
5、问题。步骤:1.写出异面直线的方向向量的坐标。 2.利用空间两个向量的夹角公式求出夹角。解:如图建立空间直角坐标系,则 ,即 和所成的角为总结: (1)与相等吗?(2)空间向量的夹角与异面直线的夹角有什么区别?点拨 求异面直线所成的角可利用空间向量表示直线的方向向量,转化为向量所成的角。两异面直线所成角的范围是,两向量的夹角的范围是。当异面直线的方向向量的夹角为锐角或直角时,就是该异面直线的夹角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线的夹角。练习1:在RtAOB中,AOB=90°,现将AOB沿着平面AOB的法向量方向平移到A1O1B1的位置,已知OA=OB=OO1,取
6、A1B1 、A1O1的中点D1 、F1,求异面直线BD1与AF1所成的角的余弦值。解:以点O为坐标原点建立空间直角坐标系,并设,则A(1,0,0) ,B(0,1,0) ,F1( ,0,1) ,D1( , ,1)所以,异面直线BD与AF所成的角的余弦值为 .练习2:在正方体ABCDABCD中,M是AB的中点,求对角线DB与CM所成角的余弦值.解:建立如图所示的直角坐标系,设正方体的棱长为1,则D(0,0,0),C(0,1,0),B1(1,1,1),M.1(1,1,1),cos1,.异面直线DB1与CM所成角的余弦值为.、小结与收获1、异面直线所成的角的余弦值:;2、用空间向量解决立体几何问题的一般步骤.、课后
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工程造价实习报告(10篇)
- 24.3.2 三角形一边的平行线 同步练习
- 物业公司试用期工作总结简短(3篇)
- 食堂食品安全自查制度
- 社区元旦活动主持稿
- 第二十六章 二次函数(单元重点综合测试)
- 统编版三年级上册语文第一学期期末考试卷(三)(含答案)
- 广东省揭阳市2024-2025学年高二上学期期中考试英语试题(含答案)
- 广东高考语文三年模拟真题(21-23年)知识点汇编-名篇名句默写
- MES系统如何帮助中小企业实现数字化转型
- led显示屏工艺流程
- 建设项目设计管理方案
- 第13课《警惕可怕的狂犬病》 课件
- 2024年届海南航空控股股份有限公司招聘笔试参考题库含答案解析
- 前程无忧在线测试题库及答案行测
- 仓库货物条码管理培训
- 第六章-中国早期社会学中的社区学派-《中国社会学史》必备
- 水产品质量安全知识讲座
- 技术协议范本通用模板
- 香港十日游旅游计划书
- 屠宰工培训课件
评论
0/150
提交评论