数控机床故障诊断与维修实例1_第1页
数控机床故障诊断与维修实例1_第2页
数控机床故障诊断与维修实例1_第3页
数控机床故障诊断与维修实例1_第4页
数控机床故障诊断与维修实例1_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、数控机床诊断与维修实例论文系部:机电工程专业:数控技术班级:数控五班姓名:科学技术的发展,对机械产品提出了高精度、高复杂性的要求,而且产品的更新换代也在加快,这对机床设备不仅提出了精度和效率的要求,而且也对其提出了通用性和灵活性的要求。数控机床就是针对这种要求而产生的一种新型自动化机床。数控机床集微电子技术、计算机技术、自动控制技术及伺服驱动技术、精密机械技术于一体,是高度机电一体化的典型产品。它本身又是机电一体化的重要组成部分,是现代机床技术水平的重要标志。数控机床体现了当前世界机床技术进步的主流,是衡量机械制造工艺水平的重要指标,在柔性生产和计算机集成制造等先进制造技术中起着重要的基础核心

2、作用。因此,如何更好的使用数控机床是一个很重要的问题。由于数控机床是一种价格昂贵的精密设备,因此,其维护更是不容忽视。由于现代数控系统的可靠性越来越高,数控系统本身的故障越来越低,而大部分故障的发生则是非系统本身原因引起的。系统外部的故障主要指由于检测开关、液压元件、气动元件、电气执行元件、机械装置等出现问题而引起的。 数控设备的外部故障可以分为软故障和外部硬件损坏引起的硬故障。软故障是指由于操作、调整处理不当引起的,这类故障多发生在设备使用前期或设备使用人员调整时期。 对于数控机床的修理,重要的是发现问题。特别是数控机床的外部故障。有时诊断过程比较复杂,但一旦发现问题所在,解决起来比较简单。

3、对外部故障诊断应遵从以下两条原则。首先要熟练掌握机床的工作原理和动作顺序。其次,要会利用PLC梯形图。NC系统的状态显示功能或机外编程器监测PLC的运行状态,一般只要遵从以上原则,小心谨慎,一般的数控故障都会及时排除。数控机床的故障复杂,诊断排除比较难,在数控机床故障检测排除时,应遵循一下原则1)先外部后内部。当数控机床发生故障后,维修人员应先采用望闻听问摸等方法由外向内逐一检查。2)先机械后电气。数控机床的故障大部分是机械动作失灵引起的,先检查机械部分是否正常,行程开关是否灵活等。可以达到事半功倍的效果。3)先静后动。维修人员本身应该做到先静后动,不可盲目动手,应先了解情况。4)先公用后专用

4、。公用性问题影响全局,专用性问题只影响局部。5)先简单后复杂。出现多种故障交织掩盖,应先解决简单的,后解决难度大的。6)先一般后特殊。出现故障,应先考虑最常见的可能原因,后分析很少发生故障的特殊原因。 数控机床是复杂的大系统,它涉及光、机、电、液等很多技术,发生故障是难免的。机械锈蚀、机械磨损、机械失效,电子元器件老化、插件接触不良、电流电压波动、温度变化、干扰、噪声,软件丢失或本身有隐患、灰尘,操作失误等都可导致数控机床出故障。 对于数控系统来说,另一个易出故障的地方为伺服单元。由于各轴的运动是靠伺服单元控制伺服电机带动滚珠丝杠来实现的。用旋转编码器作速度反馈,用光栅尺作位置反馈。一般易出故

5、障的地方为旋转编码器与伺服单元的驱动模块。也有个别的是由于电源原因而引起的系统混乱。特别是对那些带计算机硬盘保存数据的系统。例如,德国西门子系统840C。 例1:一数控车床刚投入使用的时候,在系统断电后重新启动时,必须要返回到参考点。即当用手动方式将各轴移到非干涉区外后,再使各轴返回参考点。否则,可能发生撞车事故。所以,每天加工完后,最好把机床的轴移到安全位置。此时再操作或断电后就不会出现问题。 外部硬件操作引起的故障是数控修理中的常见故障。一般都是由于检测开关、液压系统、气动系统、电气执行元件、机械装置出现问题引起的。这类故障有些可以通过报警信息查找故障原因。对一般的数控系统来讲都有故障诊断

6、功能或信息报警。维修人员可利用这些信息手段缩小诊断范围。而有些故障虽有报警信息显示,但并不能反映故障的真实原因。这时需根据报警信息和故障现象来分析解决。 例2:我厂一车削单元采用的是SINUMERIK840C系统。机床在工作时突然停机。显示主轴温度报警。经过对比检查,故障出现在温度仪表上,调整外围线路后报警消失。随即更换新仪表后恢复正常。 例3:同样是这台车削中心,工作时CRT显示9160报警“9160NOPARTWITHGRIPPER1CLOSEDVERIFYV14-5”。这是指未抓起工件报警。但实际上抓工件的机械手已将工件抓起,却显示机械手未抓起工件报警。查阅PLC图,此故障是测量感应开关

7、发出的。经查机械手部位,机械手工作行程不到位,未完全压下感应开关引起的。随后调整机械手的夹紧力,此故障排除。 例4:一台立式加工中心采用FANUC-OM控制系统。机床在自动方式下执行到X轴快速移动时就出现414和410报警。此报警是速度控制OFF和X轴伺服驱动异常。由于此故障出现后能通过重新启动消除,但每执行到X轴快速移动时就报警。经查该伺服电机电源线插头因电弧爬行而引起相间短路,经修整后此故障排除。 例5:操作者操作不当也是引起故障的重要原因。如我厂另一台采用840C系统的数控车床,第一天工作时完全正常,而第二天上班时却无论如何也开不了机,工作方式一转到自动方式下就报警“EMPTYINGSE

8、LECTEDMOOESELECTOR”。加工完工件后,主轴不停,机械手就去抓取工件,后来仔细检查各部位都无毛病,而是自动工作条件下的一个模式开关位置错了。所以,当有些故障原因不明的报警出现的话,一定要检查各工作方式下的开关位置。 由于现代数控系统的可靠性越来越高,数控系统本身的故障越来越低,而大部分故障的发生则是非系统本身原因引起的。系统外部的故障主要指由于检测开关、液压元件、气动元件、电气执行元件、机械装置等出现问题而引起的。 数控设备的外部故障可以分为软故障和外部硬件损坏引起的硬故障。软故障是指由于操作、调整处理不当引起的,这类故障多发生在设备使用前期或设备使用人员调整时期。 对于数控系统

9、来说,另一个易出故障的地方为伺服单元。由于各轴的运动是靠伺服单元控制伺服电机带动滚珠丝杠来实现的。用旋转编码器作速度反馈,用光栅尺作位置反馈。一般易出故障的地方为旋转编码器与伺服单元的驱动模块。也有个别的是由于电源原因而引起的系统混乱。特别是对那些带计算机硬盘保存数据的系统。例如,德国西门子系统840C。 例1:一数控车床刚投入使用的时候,在系统断电后重新启动时,必须要返回到参考点。即当用手动方式将各轴移到非干涉区外后,再使各轴返回参考点。否则,可能发生撞车事故。所以,每天加工完后,最好把机床的轴移到安全位置。此时再操作或断电后就不会出现问题。 外部硬件操作引起的故障是数控修理中的常见故障。一

10、般都是由于检测开关、液压系统、气动系统、电气执行元件、机械装置出现问题引起的。这类故障有些可以通过报警信息查找故障原因。对一般的数控系统来讲都有故障诊断功能或信息报警。维修人员可利用这些信息手段缩小诊断范围。而有些故障虽有报警信息显示,但并不能反映故障的真实原因。这时需根据报警信息和故障现象来分析解决。 例2:我厂一车削单元采用的是SINUMERIK840C系统。机床在工作时突然停机。显示主轴温度报警。经过对比检查,故障出现在温度仪表上,调整外围线路后报警消失。随即更换新仪表后恢复正常。 例3:同样是这台车削中心,工作时CRT显示9160报警“9160NOPARTWITHGRIPPER1CLO

11、SEDVERIFYV14-5”。这是指未抓起工件报警。但实际上抓工件的机械手已将工件抓起,却显示机械手未抓起工件报警。查阅PLC图,此故障是测量感应开关发出的。经查机械手部位,机械手工作行程不到位,未完全压下感应开关引起的。随后调整机械手的夹紧力,此故障排除。 例4:一台立式加工中心采用FANUC-OM控制系统。机床在自动方式下执行到X轴快速移动时就出现414和410报警。此报警是速度控制OFF和X轴伺服驱动异常。由于此故障出现后能通过重新启动消除,但每执行到X轴快速移动时就报警。经查该伺服电机电源线插头因电弧爬行而引起相间短路,经修整后此故障排除。 例5:操作者操作不当也是引起故障的重要原因

12、。如我厂另一台采用840C系统的数控车床,第一天工作时完全正常,而第二天上班时却无论如何也开不了机,工作方式一转到自动方式下就报警“EMPTYINGSELECTEDMOOESELECTOR”。加工完工件后,主轴不停,机械手就去抓取工件,后来仔细检查各部位都无毛病,而是自动工作条件下的一个模式开关位置错了。所以,当有些故障原因不明的报警出现的话,一定要检查各工作方式下的开关位置。 还有些故障不产生故障报警信息,只是动作不能完成,这时就要根据维修经验、机床的工作原理和PLC运行状况来分析判断了。 故障排除的一般方法当数控系统出现报警发生故障时,维修人员不要急于动手处理,而应多进行观察和试验。充分调

13、查故障现场这是维修人员取得第一手材料的一个重要手段。一方面要向操作者调查,详细询问出现故障的全过程,查看故障记录单,了解发生过什么现象,曾采取过什么措施等;另一方面,要对现场要做细致的勘查。从系统的外观到系统内部各印刷线路板都应细心地察看是否有异常之处。在确认系统通电无危险有情况下,方可通电,观察系统有何异常,CRT显示的内容等。认真分析产生故障的起因当前的CNC系统智能化程度都比较低,系统尚不能自动诊断出发生故障的确切原因。往往是同一报警号可以有多种起因,不可能将故障缩小到具体的某一部件。因此,在分析故障的起因时,一定要思路开阔。往往有这种情况,自诊断出系统的某一部分有故障,但究其起源,却不

14、在数控系统,而是在机械部分。所以,无论是CNC系统,机床强电,还是机械、液压、气路等,只要有可能引起该故障的原因,都要尽可能全面地列出来,进行综合判断和筛选,然后通过必要的试验,达到确诊和最终排除故障的目的。造成数控系统故障而又不易发现的另一个重要原因是干扰。根据经验,大致有下面几种原因。()机床生产厂的装配工艺问题装配工艺不好反映在干扰方面的表现大致有如下几点。没有采用一点接地法。有些机床生产为了图省事,到处就近接地,结果造成多点接地,形成地环流。由于接地点选择不当或接触不良,甚至虚焊造成接地电阻变大而引起噪声干扰。CNC系统与主机的信号通讯,有许多是采用屏蔽线连接的,若对屏蔽地处理不当,没

15、有按照规定连接(如有的屏蔽地按规定只许接在系统侧,而不能接在机床侧,如图4.31所示)也是造成干扰的一种因素。()强电干扰数控机床的强电柜中的接触器、继电器等电磁部件均是CNC系统的干扰源 。交流接触器,交流电机的频繁起动、停止时,其电磁感应现象会使CNC系统控制电路中产生尖峰或波涌等噪声,干扰系统的正常工作。因此,一定要对这些电磁干扰采取措施,予以消除。通常是采用在交流接触器线圈的两端或交流电机的三相输入端并联RC网络,而在直流接触器或在直流电磁阀的线圈两端反相并入一个续流二极管等的办法来抑制这些电器产生的干扰噪声(如图4.32所示)。但要注意一点,这些并入的吸收网络的连线不应大于20cm,

16、否则,其效果就不理想。同时,查CNC系统的控制电路的输入电源部分,也要采取措施。一般多用浪涌吸收器并联在电源线间,如图4.33所示,从而可有效地吸收电网中的尖峰电压,起到一定的保护作用。()供电线路的干扰由于我国局部地区电力不足和供电频率不稳和用户厂电网分配不合理等因素造成供电线路的干扰。现象可归纳为超压、欠压、频率和相位漂移、谐波失真、共模噪声及常模噪声等原因。为养活供电电线路干扰可采取下列措施。在电网电压变化较大的地区,应在CNC系统的输入电源前增加电子稳压器,以养活电网电压波动。如果能加入电源调节器,则效果更好,但切不可串入自耦变压器。用户厂的供电线路的容量应能满足数控机床电器容量的要求

17、。数控机床避免与电火花设备以及大功率的起、停频繁的设备共用一干线,以免这些设备的干扰通过供电线串入到CNC系统中。数控机床设备安置时应远离中频炉、高频感应炉等变频设备。动手修复一旦故障部位已找到,但手头却无可更换的备件时,可用移植借用办法,作为应急措施来解决。例如某一组件坏了(如与非门或触发器等),但损坏的往往只是组件中的某一路,其它几部分还是好的。而在印刷线路板的设计中,又往往只是用了组件中的一部分,没有全部用满。此时,可将没有使用的富余部分取来作为应急用。具体的作法是,切断已损坏部分的插脚(包括输入和输出脚),然后由区线将信号输入、输出线引至富余的组件插脚 上即可。 当数控设备出现故障时,

18、首先要搞清故障现象,向操作人员了解第一次出现故障时的情况,在可能的情况下观察故障发生的过程,观察故障是在什么情况下发生的,怎么发生的,引起怎样的后果。只有了解到第一手情况,才有利于故障的排除,把故障过程搞清了,问题就解决一半了。搞清了故障现象,然后根据机床和数控系统的工作原理,就可以很快地确诊问题所在并将故障排除,使设备恢复正常使用。 如,一台采用美国BRYANT公司TEACHABLE 系统的数控外圆磨床在自动加工时,砂轮将修整器磨掉一块。为了观察故障现象并防止意外再次发生,将砂轮拆下运行机床,这时再观察故障现象,发现在自动磨削加工时,磨削正常没有问题,工件磨削完之后,修整砂轮时,砂轮正常进给

19、,而砂轮修整器旋转非常快,很快就压上限位开关,如果这时砂轮没拆,肯定砂轮又要撞到修整器上。根据机床的工作原理,砂轮修整器由E轴伺服电机带动,用旋转编码器作为位置反馈元件。正常情况下修整器修整砂轮时,Z轴滑台带动E轴修整器移动到修整位置,修整器做30°120°的摆动来修整砂轮。我们多次观察故障现象发现,E轴在压上限位开关时,在屏幕上E轴的坐标值只有60°左右,而实际位置大概在180°左右,显然是位置反馈出现问题,但更换了位控板和编码器都没有解决问题。我们又经过反复的观察和试验,发现:E轴修整器在Z轴的边缘时,回参考点和旋转摆动都没有问题,要利用系统的报警信

20、息 现在数控系统的自诊断能力越来越强,设备的大部分故障数控系统都能够诊断出来,并采取相应的措施,如停机等,一般都能产生报警显示。当数控设备出现故障时,有时在显示器上显示报警信息,有时在数控装置上、PLC装置上和驱动装置上还会有报警指示。这时要根据手册对这些报警信息进行分析,有些根据报警信息就可直接确认故障原因,只要搞清报警信息的内容,就可排除数控设备出现的故障。 如,一台采用德国SIEMENS 810系统的数控沟道磨床,开机后就产生1号报警显示“BATTERY ALARM POWER SUPPLY”,很明显指示数控系统断电保护电池没电,更换新的电池后(注意:一定要在系统带电的情况下更换电池),

21、将故障复位,机床恢复使用。另一台采用SIEMENS 3系统的数控磨床,开机后屏幕没有显示,检查数控装置,发现CPU板上一个发光二极管闪烁,根据说明书,分析其闪烁频率,确认为断电保护电池电压低,更换电池后,重新启动系统故障消失。 如,一台采用日本FANUC 0TC系统的数控车床,出现2043号报警,显示“HYD. PRESSURE DOWN",指示液压系统压力低。根据报警信息,对液压系统进行检查,发现液压压力确实很低,对液压压力进行调整使机床恢复了正常使用。 另一些故障的报警信息并不能反映故障的根本原因,而是反映故障的结果或者由此引起的其它问题,这时要经过仔细的分析和检查才能确定故障原

22、因,下面的方法对这类故障及没有报警的一些故障的检测是行之有效的。 要利用数控系统的PLC状态显示功能 许多数控系统都有PLC状态显示功能,如西门子3系统PC菜单下的PC STATUS,西门子810系统DIAGNOSIS菜单下的PLC STATUS功能,以及发那科0T系统DGNOS PARAM 功能的PMC状态显示功能等,利用这些功能可显示PLC的输入、输出、定时器、计数器等的即时状态和内容。根据机床的工作原理和机床厂家提供的电气原理图,通过监视相应的状态,就可确诊一些故障。 如,一台采用日本FANUC 0TC的数控车床,一次出现故障,开机就出现2041号报警,指示X轴超限位的报警,但观察X轴并

23、没有超限位,并且X轴的限位开关也没有压下,但利用NC系统的PMC状态显示功能,检查X轴限位开关的PMC输入X0.0的状态为“1”,开关触点确实已经接通,说明开关出现了问题,更换新的开关后,机床故障消除。 如,一台采用日本MITSUBINSHI MELDAS L3系统的数控车床,一次出现故障,刀塔不旋转。根据刀塔的工作原理,刀塔旋转时,首先靠液压缸将刀塔浮起,然后才能旋转。观察故障现象,当手动按下刀塔旋转的按钮时,刀塔根本没有反应,也就是说,刀塔没有浮起,根据电气原理图,PLC的输出Y4.4控制继电器K44来控制电磁阀,电磁阀控制液压缸使刀塔浮起,首先通过NC系统的PLC状态显示功能,观察Y4.

24、4的状态,当按下手动刀塔旋转按钮时,其状态变为“1”,没有问题,继续检查发现,是其控制的直流继电器K44的触点损坏,更换新的继电器,刀塔恢复了正常工作。 要利用机床厂家提供的PLC梯形图 数控设备出现的大部分故障都是通过PLC装置检查出来的,PLC检测故障的机理就是通过运行机床厂家为特定机床编制的PLC梯形图(即程序),根据各种输入、输出状态进行逻辑判断,如果发现问题,产生报警并在显示器上产生报警信息。所以对一些PLC产生报警的故障,或一些没有报警的故障,可以通过分析PLC的梯形图对故障进行诊断,利用NC系统的梯图显示功能或者机外编程器在线跟踪梯形图的运行,可提高诊断故障的速度和准确性。 如,

25、一台采用SIEMENS 810系统的数控磨床,一次出现故障,开机后机床不回参考点并且没有故障显示,检查控制面板发现分度装置落下的指示灯没亮,这台机床为了安全起见,只要分度装置没落下,机床的进给轴就不能运动。但检查分度装置,已经落下没有问题。根据机床厂家提供PLC梯形图,PLC的输出A7.3控制面板上的分度装置落下指示灯。用编程器在线观察梯形图的运行,发现F143.4没有闭合,致使A7.3的状态为“0”。F143.4指示工件分度台在落下位置,继续检查发现由于输入E13.2没有闭合导致F143.4的状态为“0”。根据电气原理图,PLC输入E13.2接的是检测工件分度装置落下的接近开关36PS13,

26、将分度装置拆开,发现机械装置有问题,不能带动驱动接近开关的机械装置运动,所以E13.2始终不能闭合。将机械装置维修好后,机床恢复了正常使用。 一台采用SIEMENS 3TT系统的数控铣床,在自动循环加工过程中,工件已加工完毕,工作台正要旋转,主轴还没有退到位,这时第二工位主轴停转,自动循环中断,产生报警F97“SPINDLE1 SPEED NOT OK STATION2”和F98“SPINDLE2 SPEED NOT OK STATION2”,表示第二工位两个主轴速度不正常。但对主轴系统进行检测并没有发现问题。为了确定故障原因,用机外编程器动态监视机床PLC梯形图的运行,根据逻辑关系进行检查,

27、最后发现是第二工位的工件卡紧液压压力开关,E21.1在出现故障的瞬间其状态发生变化,由“1”信号瞬间变成“0”信号,紧接着又变成“1”信号,E21.1接的是压力开关P21.1,它的状态变成“0”,信号指示工件没有卡紧,所以主轴停转,自动循环停止。由于工件的卡紧是由液压来完成的,对液压系统进行检查,发现压力有些不稳,对液压系统进行调整,使之稳定,机床恢复了正常工作。这个故障的报警信息反映的是由于液压不稳造成的主轴停转的现象,而没有反映液压不稳的故障根源。 以上两种方法对机床侧故障的检测是非常有效的,因为这些故障无非是检测开关、继电器、电磁阀的损坏或者机械执行结构出现问题,这些问题基本都可以根据P

28、LC程序,通过检测其相应的状态来确认故障点。而遇到一些系统故障时,有时情况比较复杂,采用以下的方法及检测原则可快速确认故障点。 利用交换法准确定位故障点 对于一些涉及到控制系统的故障,有时不容易确认哪一部分有问题,在确保没有进一步损坏的情况下,用备用控制板代换被怀疑有问题的控制板,是准确定位故障点的有效办法,有时与其它机床上同类型控制系统的控制板互换会更快速诊断故障(这时要保证不会把好的板子损坏)。 如,一台采用美国BRYANT公司TEACHABLE 系统的数控内圆磨床,一次出现故障,在E轴运动时,出现报警:"E AXIS EXCESS FOLLOWING ERROR",这

29、个报警的含义是E轴位移的跟随误差超出设定范围。由于E轴一动就产生这个报警,E轴无法回参考点。手动移动E轴,观察故障现象,当E轴运动时,屏幕上显示E轴位移的变化,当从0走到14时,屏幕上的数值突然跳变到471。反向运动时也是如此,当达到 -14时,也跳变到471。这时出现上述报警,进给停止。经分析可能是E轴位置反馈系统的问题,这包括E轴编码器、连接电缆、数控系统的位控板以及数控系统CPU板等,为了尽快发现问题,本着先简单后复杂的原则,首先更换位控板,这时故障消除。这台机床另一次X轴出现这个报警,首先更换位控板,故障没有排除,因此怀疑编码器的损坏可能性比较大,当拆下编码器时发现,其联轴节已断开,更

30、换新的联轴节,故障消除。 要本着先外围后内部、先机械后电气、先简单后复杂、先静后动、先公用后专用、先查软件后查硬件的原则检查故障 对于数控设备出现较复杂的故障,特别是涉及到控制系统时,应用这些原则可简化故障的诊断过程,避免走弯路。有时这些原则应该结合使用,这样才能使故障尽快排除。 如,一台采用SIEMENS 3系统的数控磨床,在回参考点时,X轴找不到参考点,最后出现X轴超限位报警,本着先外围后内部的原则,首先检查X轴的零点开关,正常没有问题,观察故障现象,X轴压上限位开关后,也能减速;之后根据先简单后复杂的原则,先检查NC系统的位控板,因为反馈硬件采用的是光栅尺,所以在位控板上,X轴、Y轴各加

31、了一块EXE处理板,首先将X轴与Y轴的EXE板互换,这时开机测试,X轴回参考点正常,故障转移到Y轴上,Y轴找不到参考点,故障现象相同,从而确认EXE板有问题,更换EXE板故障消除。 如,一台采用SIEMENS 810系统的数控淬火机床,一次出现故障,开机回参考点,走X轴时,出现报警1680“SERVO ENABLE TRAV. AXIS X”,手动走X轴也出现这个报警,检测伺服装置,发现有过载报警指示。根据西门子说明书产生这个故障的原因是机械负载过大、伺服控制电源出现问题、伺服电机出现故障等,本着先机械后电气的原则,首先检测X轴滑台,手动盘动X轴滑台,发现非常沉,盘不动,肯定是机械部分出现了问

32、题。将X轴滚珠丝杠拆下检测,发现滚珠丝杠已锈蚀,原来是滑台密封不好,淬火液进入滚珠丝杠,造成滚珠丝杠的锈蚀,更换新的滚珠丝杠故障消除。如,一台采用SIEMENS 3系统的数控磨床,一段时间在自动加工过程中,经常中途停止自动循环,并且出现报警114“SERVO LOOP HARDWARE”,指示Y轴伺服系统出现问题,根据手册说明,是伺服测量反馈系统的问题。为了进一步确认故障,本着先静后动的原则,机床开机回完参考点后,机床不进行任何操作处于等待状态,这时机床并不出现报警,当进行自动加工时,偶尔就出现这个报警,并且每次都是在运动到190mm左右时出现报警,因为这台机床的X轴和Y轴的位置反馈采用的是光

33、栅尺,其引出电缆与滑台一同运动,因此怀疑该电缆经常运动而使一些信号线折断,在运动到一定位置时断开产生报警,经检查证实了这一判断,更换新的电缆后,故障消除。这台机床另一次出现这个故障,在静止观察时就出现这个报警,因此怀疑控制板有问题,将位控板上Y轴的EXE板与X轴的对换,这时开机测试,故障转移到X轴上,说明原Y轴的EXE板损坏,更换新的EXE板故障消除。如,三相异步电动机一相或两相绕组烧毁(或过热)的原因及对策    如果出现电动机一相或两相绕组烧坏(或过热),一般都是因为缺相运行所致。当电机不论何种原因缺相后,电动机虽然尚能继续运行,但转速下降,滑差变大,其中B、C两相变为串联关系后与A相并联,在负荷不变的情况下,A相电流过大,长时间运行,该相绕组必然过热而烧毁。  转贴于 中国论文下载中为三相异步电动机绕组为Y接法的情况

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论