版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2004年全国硕士研究生入学统一考试数学(一)试题及答案一、 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线y=lnx上与直线垂直的切线方程为 .【分析】 本题为基础题型,相当于已知切线的斜率为1,由曲线y=lnx的导数为1可确定切点的坐标。【详解】 由,得x=1, 可见切点为,于是所求的切线方程为 , 即 .【评注】 本题也可先设切点为,曲线y=lnx过此切点的导数为,得,由此可知所求切线方程为, 即 .(2)已知,且f(1)=0, 则f(x)= .【分析】 先求出的表达式,再积分即可。【详解】 令,则,于是有 , 即 积分得 . 利用初始条件f(1)=0,
2、 得C=0,故所求函数为f(x)= .(3)设为正向圆周在第一象限中的部分,则曲线积分的值为 .【分析】 利用极坐标将曲线用参数方程表示,相应曲线积分可化为定积分。【详解】 正向圆周在第一象限中的部分,可表示为 于是 =(4)欧拉方程的通解为 .【分析】 欧拉方程的求解有固定方法,作变量代换化为常系数线性齐次微分方程即可。【详解】 令,则 , ,代入原方程,整理得,解此方程,得通解为 【评注】 本题属基础题型,也可直接套用公式,令,则欧拉方程 ,可化为 (5)设矩阵,矩阵B满足,其中为A的伴随矩阵,E是单位矩阵,则 .【分析】 可先用公式进行化简【详解】 已知等式两边同时右乘A,得, 而,于是
3、有, 即 ,再两边取行列式,有 , 而 ,故所求行列式为 (6)设随机变量X服从参数为的指数分布,则= .【分析】 已知连续型随机变量X的分布,求其满足一定条件的概率,转化为定积分计算即可。【详解】 由题设,知,于是 = =二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)把时的无穷小量,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A) . (B) . (C) . (D) . B 【分析】 先两两进行比较,再排出次序即可.【详解】 ,可排除(C),(D)选项,又 =,可见是比低阶的无穷小量,故应选
4、(B).(8)设函数f(x)连续,且则存在,使得 (A) f(x)在(0,内单调增加. (B)f(x)在内单调减少.(C) 对任意的有f(x)>f(0) . (D) 对任意的有f(x)>f(0) . C 【分析】 函数f(x)只在一点的导数大于零,一般不能推导出单调性,因此可排除(A),(B)选项,再利用导数的定义及极限的保号性进行分析即可。【详解】 由导数的定义,知 ,根据保号性,知存在,当时,有 即当时,f(x)<f(0); 而当时,有f(x)>f(0). 故应选(C).(9)设为正项级数,下列结论中正确的是 (A) 若=0,则级数收敛.(B) 若存在非零常数,使得
5、,则级数发散.(C) 若级数收敛,则. (D) 若级数发散, 则存在非零常数,使得. B 【分析】 对于敛散性的判定问题,若不便直接推证,往往可用反例通过排除法找到正确选项.【详解】 取,则=0,但发散,排除(A),(D);又取,则级数收敛,但,排除(C), 故应选(B).(10)设f(x)为连续函数,则等于 (A) 2f(2). (B) f(2). (C) f(2). (D) 0. B 【分析】 先求导,再代入t=2求即可。关键是求导前应先交换积分次序,使得被积函数中不含有变量t.【详解】 交换积分次序,得 =于是,从而有 ,故应选(B).(11)设A是3阶方阵,将A的第1列与第2列交换得B
6、,再把B的第2列加到第3列得C, 则满足AQ=C的可逆矩阵Q为(A) . (B) . (C) . (D) . D 【分析】 本题考查初等矩阵的的概念与性质,对A作两次初等列变换,相当于右乘两个相应的初等矩阵,而Q即为此两个初等矩阵的乘积。【详解】由题设,有 , ,于是, 可见,应选(D).(12)设A,B为满足AB=O的任意两个非零矩阵,则必有(A) A的列向量组线性相关,B的行向量组线性相关. (B) A的列向量组线性相关,B的列向量组线性相关. (C) A的行向量组线性相关,B的行向量组线性相关. (D) A的行向量组线性相关,B的列向量组线性相关. A 【分析】A,B的行列向量组是否线性
7、相关,可从A,B是否行(或列)满秩或Ax=0(Bx=0)是否有非零解进行分析讨论.【详解1】 设A为矩阵,B 为矩阵,则由AB=O知, . 又A,B为非零矩阵,必有r(A)>0,r(B)>0. 可见r(A)<n, r(B)<n, 即A的列向量组线性相关,B的行向量组线性相关,故应选(A).【详解2】 由AB=O知,B的每一列均为Ax=0的解,而B为非零矩阵,即Ax=0存在非零解,可见A的列向量组线性相关。同理,由AB=O知,于是有的列向量组,从而B的行向量组线性相关,故应选(A).(13)设随机变量X服从正态分布N(0,1),对给定的,数满足,若,则等于(A) . (B
8、) . (C) . (D) . C 【分析】 此类问题的求解,可通过的定义进行分析,也可通过画出草图,直观地得到结论。【详解】 由标准正态分布概率密度函数的对称性知,于是即有 ,可见根据定义有,故应选(C).(14)设随机变量独立同分布,且其方差为 令,则(A) Cov( (B) . (C) . (D) . A 【分析】 本题用方差和协方差的运算性质直接计算即可,注意利用独立性有:【详解】 Cov( =(15)(本题满分12分)设, 证明.【分析】 根据要证不等式的形式,可考虑用拉格朗日中值定理或转化为函数不等式用单调性证明.【证法1】 对函数在a,b上应用拉格朗日中值定理,得 设,则, 当t
9、>e时, 所以单调减少,从而,即 ,故 .【证法2】 设,则 , ,所以当x>e时, 故单调减少,从而当时, ,即当时,单调增加.因此当时,即 ,故 .(16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg的飞机,着陆时的水平速度为700km/h. 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为 问从着陆点算起,飞机滑行的最长距离是多少?注kg表示千克,km/h表示千米/小时.【分析】 本题是标准的牛顿第二定理的应用,列出关系式后再解微分方程即可。【详解1】
10、 由题设,飞机的质量m=9000kg,着陆时的水平速度. 从飞机接触跑道开始记时,设t时刻飞机的滑行距离为x(t),速度为v(t).根据牛顿第二定律,得 .又 ,由以上两式得 ,积分得 由于,故得,从而 当时, 所以,飞机滑行的最长距离为1.05km.【详解2】 根据牛顿第二定律,得 ,所以 两端积分得通解,代入初始条件解得,故 飞机滑行的最长距离为 或由,知,故最长距离为当时,【详解3】 根据牛顿第二定律,得 , ,其特征方程为 ,解之得,故 由 ,得 于是 当时,所以,飞机滑行的最长距离为1.05km.(17)(本题满分12分)计算曲面积分 其中是曲面的上侧.【分析】 先添加一曲面使之与原
11、曲面围成一封闭曲面,应用高斯公式求解,而在添加的曲面上应用直接投影法求解即可.【详解】 取为xoy平面上被圆所围部分的下侧,记为由与围成的空间闭区域,则 由高斯公式知 = =而 ,故 (18)(本题满分11分)设有方程,其中n为正整数. 证明此方程存在惟一正实根,并证明当时,级数收敛.【分析】 利用介值定理证明存在性,利用单调性证明惟一性。而正项级数的敛散性可用比较法判定。【证】 记 由,及连续函数的介值定理知,方程存在正实数根当x>0时,可见在上单调增加, 故方程存在惟一正实数根由与知 ,故当时,.而正项级数收敛,所以当时,级数收敛. (19)(本题满分12分)设z=z(x,y)是由确
12、定的函数,求的极值点和极值.【分析】 可能极值点是两个一阶偏导数为零的点,先求出一阶偏导,再令其为零确定极值点即可,然后用二阶偏导确定是极大值还是极小值,并求出相应的极值.【详解】 因为 ,所以 , .令 得 故 将上式代入,可得 或 由于 , ,所以 ,故,又,从而点(9,3)是z(x,y)的极小值点,极小值为z(9,3)=3.类似地,由 ,可知,又,从而点(-9, -3)是z(x,y)的极大值点,极大值为z(-9, -3)= -3.(20)(本题满分9分)设有齐次线性方程组试问a取何值时,该方程组有非零解,并求出其通解.【分析】 本题是方程的个数与未知量的个数相同的齐次线性方程组,可考虑对
13、系数矩阵直接用初等行变换化为阶梯形,再讨论其秩是否小于n,进而判断是否有非零解;或直接计算系数矩阵的行列式,根据题设行列式的值必为零,由此对参数a的可能取值进行讨论即可。【详解1】 对方程组的系数矩阵A作初等行变换,有 当a=0时, r(A)=1<n,故方程组有非零解,其同解方程组为 由此得基础解系为 于是方程组的通解为 其中为任意常数.当时,对矩阵B作初等行变换,有 可知时,故方程组也有非零解,其同解方程组为 由此得基础解系为 ,于是方程组的通解为 ,其中k为任意常数.【详解2】 方程组的系数行列式为 .当,即a=0或时,方程组有非零解.当a=0时,对系数矩阵A作初等行变换,有 ,故方
14、程组的同解方程组为 由此得基础解系为 于是方程组的通解为 其中为任意常数.当时,对系数矩阵A作初等行变换,有 ,故方程组的同解方程组为 由此得基础解系为 ,于是方程组的通解为 ,其中k为任意常数.(21)(本题满分9分) 设矩阵的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.【分析】 先求出A的特征值,再根据其二重根是否有两个线性无关的特征向量,确定A是否可相似对角化即可.【详解】 A的特征多项式为 =当是特征方程的二重根,则有 解得a= -2.当a= -2时,A的特征值为2,2,6, 矩阵2E-A=的秩为1,故对应的线性无关的特征向量有两个,从而A可相似对角化。若不是特征方程的二
15、重根,则为完全平方,从而18+3a=16,解得 当时,A的特征值为2,4,4,矩阵4E-A=秩为2,故对应的线性无关的特征向量只有一个,从而A不可相似对角化。(22)(本题满分9分)设A,B为随机事件,且,令 求:(I)二维随机变量(X,Y)的概率分布; (II)X和Y的相关系数【分析】 先确定(X,Y)的可能取值,再求在每一个可能取值点上的概率,而这可利用随机事件的运算性质得到,即得二维随机变量(X,Y)的概率分布;利用联合概率分布可求出边缘概率分布,进而可计算出相关系数。【详解】 (I) 由于, 所以, , , =(或),故(X,Y)的概率分布为 Y X 0 1 0 1 (II) X, Y的概率
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年葵花籽种植户互助合作社合同3篇
- 2025年度旅游主题公园运营管理合同4篇
- 二零二五年度煤炭清洁利用技术研发与应用合同4篇
- 2025版旅游交通车辆租赁及保险合同4篇
- 二零二五年度高新技术企业税收优惠政策申请合同3篇
- 二零二五年度铝单板市场调研采购合同3篇
- 2025年猪圈修建及粪污处理系统合同模板3篇
- 2025年无证房产转让合同范本专业版3篇
- 二零二五年度绿化工程后期维护管理合同4篇
- 2025年私立医院护士老年护理专业聘用合同3篇
- GB/T 15593-2020输血(液)器具用聚氯乙烯塑料
- 2023年上海英语高考卷及答案完整版
- 西北农林科技大学高等数学期末考试试卷(含答案)
- 金红叶纸业简介-2 -纸品及产品知识
- 《连锁经营管理》课程教学大纲
- 《毕淑敏文集》电子书
- 颈椎JOA评分 表格
- 员工岗位能力评价标准
- 定量分析方法-课件
- 朱曦编著设计形态知识点
- 110kV变电站工程预算1
评论
0/150
提交评论