变化率与导数学案95012_第1页
变化率与导数学案95012_第2页
变化率与导数学案95012_第3页
变化率与导数学案95012_第4页
变化率与导数学案95012_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1.1 变化率与导数学案1.1.1 变化率问题学习目标:1.理解平均变化率的概念; 2.了解平均变化率的几何意义; 3.会求函数在某点处附近的平均变化率.教学重点:平均变化率的概念、函数在某点处附近的平均变化率.教学难点:平均变化率的概念.教学过程: (一)问题提出问题1 气球膨胀率 我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?分析: (1)当从增加到时,气球半径增加了 气球的平均膨胀率为 (2)当从增加到时,气球半径增加了 气球的平均膨胀率为 可以看出: 思考: 当空气容量从V1增加到V2时,气球的平均膨胀率

2、是多少? 问题2 高台跳水hto 在高台跳水运动中,运动员相对于水面的高度(单位:)与起跳后的时间(单位:)存在函数关系.如何用运动员在某些时间段内的平均速度粗略地描述其运动状态?思考计算: 和的平均速度探究: 计算运动员在这段时间里的平均速度,并思考以下问题:(1)运动员在这段时间内是静止的吗?(2)你认为用平均速度描述运动员的运动状态有什么问题吗? (二)平均变化率概念1.上述问题中的变化率可用式子表示,称为函数从到的平均变化率.2.若设, (这里看作是对于的一个“增量”可用代替,同样)则平均变化率为思考: 观察函数的图象平均变化率表示什么?三、典例分析例1 已知函数的图象上的一点及临近一

3、点则 .解: 例2 求在附近的平均变化率.解: 四、课堂练习1.质点运动规律为,则在时间中相应的平均速度为 .2.物体按照的规律作直线运动,求在附近的平均变化率.3.过曲线上两点和作曲线的割线,求出当时割线的斜率.五、课堂反馈1 设函数,当自变量由改变到时,函数的改变量为()ABCD2 一质点运动的方程为,则在一段时间内的平均速度为()A4B8C6D63 将半径为R的球加热,若球的半径增加,则球的表面积增加等于()ABCD4 在曲线的图象上取一点(1,2)及附近一点,则为()ABCD1.1.2 导数的概念学习目标:1.了解瞬时速度、瞬时变化率的概念;2.理解导数的概念,知道瞬时变化率就是导数,

4、体会导数的思想及其内涵;3.会求函数在某点的导数.教学重点:瞬时速度、瞬时变化率的概念、导数的概念.教学难点:导数的概念.学习过程:一、创设情景hto (一)平均变化率:(二)探究探究: 计算运动员在这段时间里的平均速度,并思考以下问题:(1)运动员在这段时间内使静止的吗?(2)你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程: 二、学习新知1.瞬时速度我们把物体在某一时刻的速度称为瞬时速度.运动员的平均速度不能反映他在某一时刻的瞬时速度,那么,如何求运动员的瞬时速度呢?比如,时的瞬时速度是多少?考察附近的情况:思考: 当趋近于时,平均速度有什么样的变化趋势?结论: 小结: 2.导数

5、的概念从函数在处的瞬时变化率是:我们称它为函数在出的导数,记作或即说明: (1)导数即为函数在处的瞬时变化率; (2),当时,所以.三、典例分析例1 (1)求函数在处的导数.(2)求函数在附近的平均变化率,并求出该点处的导数.分析: 先求,再求,最后求.解: (1) (2) 例2 将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热,如果第时,原油的温度(单位:)为,计算第时和第时,原油温度的瞬时变化率,并说明它们的意义.解: 注: 一般地,反映了原油温度在时刻附近的变化情况.四、课堂练习1.质点运动规律为,求质点在的瞬时速度为.2.求曲线在时的导数.五、课堂反馈1自变量由变到

6、时,函数值的增量与相应自变量的增量之比是函数( )A 在区间上的平均变化率 B 在处的变化率C 在处的变化率D 在区间上的导数2下列各式中正确的是( )A B C D 3设,若,则的值( )A 2 B . 2C 3 D 34任一做直线运动的物体,其位移与时间的关系是,则物体的初速度是( )A 0 B 3C 2 D 5函数, 在处的导数是 6,当时 , 7设圆的面积为A,半径为,求面积A关于半径的变化率。8(1)已知在处的导数为,求及的值。(2)若,求的值.1.1.3 导数的几何意义学习目标:1.了解平均变化率与割线斜率之间的关系;2.理解曲线的切线的概念;3.通过函数的图像直观地理解导数的几何

7、意义,并会用导数的几何意义解题.教学重点:曲线的切线的概念、切线的斜率、导数的几何意义.教学难点:导数的几何意义.学习过程:一、创设情景(一)平均变化率、割线的斜率(二)瞬时速度、导数我们知道,导数表示函数在处的瞬时变化率,反映了函数在附近的变化情况,导数的几何意义是什么呢?二、学习新知(一)曲线的切线及切线的斜率如图,当沿着曲线趋近于点时,割线的变化趋势是什么?我们发现:问题: (1)割线的斜率与切线的斜率有什么关系? (2)切线的斜率为多少?说明: (1)设切线的倾斜角为,那么当时,割线的斜率,称为曲线在点处的切线的斜率.这个概念: 提供了求曲线上某点切线的斜率的一种方法; 切线斜率的本质

8、函数在处的导数.(2)曲线在某点处的切线:1)与该点的位置有关;2)要根据割线是否有极限位置来判断与求解.如有极限,则在此点有切线,且切线是唯一的;如不存在,则在此点处无切线;3)曲线切线,并不一定与曲线只有一个交点,可以有多个,甚至可以无穷多.(二)导数的几何意义函数在处的导数等于在该点处的切线的斜率,即说明: 求曲线在某点处的切线方程的基本步骤:求出点的坐标;求出函数在点处的变化率得到曲线在点的切线的斜率;利用点斜式求切线方程.(三)导函数由函数在处求导数的过程可以看到,当时,是一个确定的数,那么,当变化时,便是的一个函数,我们叫它为的导函数.记作:或,即.注: 在不致发生混淆时,导函数也

9、简称导数.(四)函数在点处的导数、导函数、导数之间的区别与联系(1)函数在一点处的导数,就是在该点的函数的改变量与自变量的改变量之比的极限,它是一个常数,不是变数.(2)函数的导数,是指某一区间内任意点而言的,就是函数的导函数.(3)函数在点处的导数就是导函数在处的函数值,这也是求函数在点处的导数的方法之一.三、典例分析例1 (1)求曲线在点处的切线方程.(2)求函数在点处的导数.解: 例2 如图3.1-3,它表示跳水运动中高度随时间变化的函数,根据图像,请描述、比较曲线在、附近的变化情况.解: 四、课堂练习1.求曲线在点处的切线.2.求曲线在点处的切线.五、课堂反馈1曲线在处的( )A 切线斜率为1 B 切线方程为 C 没有切线 D 切线方程为2已知曲线上的一点A(2,8),则点A处的切线斜率为( )A 4 B 16 C 8 D 23函数在处的导数的几何意义是( )A 在点处的函数值 B 在点处的切线与轴所夹锐角的正切值C 曲线在点处的切线的斜率 D 点与点(0,0)连线的斜率4已知曲线上过点(2,8)的切线方程为,则实数的值为( )A 1 B 1 C 2 D 25若,则( )A 3 B 6 C 9 D 126设为可导函数,且满足条件,则曲线在点(1,1)处的切线的斜率为( )A 2 B 1 C D

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论