《实际问题与二次函数》第三课时_第1页
《实际问题与二次函数》第三课时_第2页
《实际问题与二次函数》第三课时_第3页
《实际问题与二次函数》第三课时_第4页
《实际问题与二次函数》第三课时_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、26.3 实际问题与二次函数实际问题与二次函数(3)解一解一解二解二探究探究3 图中是抛物线形拱桥,当水面在图中是抛物线形拱桥,当水面在 时,拱顶离水面时,拱顶离水面2m,水面宽水面宽4m,水面下降,水面下降1m时,水面宽度增加了多少?时,水面宽度增加了多少?l继续继续解一解一 以抛物线的顶点为原点,以抛物线的对称轴为以抛物线的顶点为原点,以抛物线的对称轴为 轴,建立平轴,建立平面直角坐标系,如图所示面直角坐标系,如图所示.y可设这条抛物线所表示可设这条抛物线所表示的二次函数的解析式为的二次函数的解析式为:2axy 当拱桥离水面当拱桥离水面2m时时,水面宽水面宽4m即抛物线过点即抛物线过点(2

2、,-2)22a2 5 .0a 这条抛物线所表示的二这条抛物线所表示的二次函数为次函数为:2x5.0y 当水面下降当水面下降1m时时,水面的水面的纵坐标为纵坐标为y=-3,这时有这时有:2x5 . 03 6x m62这这时时水水面面宽宽度度为为当水面下降当水面下降1m时时,水面宽水面宽度增加了度增加了m)462( 返回返回解二解二 如图所示如图所示,以抛物线和水面的两个交点的连线为以抛物线和水面的两个交点的连线为x轴,以其中轴,以其中的一个交点的一个交点(如左边的点如左边的点)为原点,建立平面直角坐标系为原点,建立平面直角坐标系.可设这条抛物线所表示可设这条抛物线所表示的二次函数的解析式为的二次

3、函数的解析式为:2)2x(ay2 抛物线过点抛物线过点(0,0)2)2(a02 5 .0a 这条抛物线所表示的二这条抛物线所表示的二次函数为次函数为:2)2x(5 . 0y2 当水面下降当水面下降1m时时,水面的水面的纵坐标为纵坐标为y=-1,这时有这时有:2)2x(5 . 012 62x,62x21 m62xx12 当水面下降当水面下降1m时时,水面宽水面宽度增加了度增加了m)462( 此时此时,抛物线的顶点为抛物线的顶点为(2,2)这时水面的宽度为这时水面的宽度为:返回返回 例例:某工厂大门是一抛物线形的水泥建筑物某工厂大门是一抛物线形的水泥建筑物,大门底部宽大门底部宽AB=4m,顶部顶部

4、C离地面的高度为离地面的高度为4.4m,现有载满货物的汽车现有载满货物的汽车欲通过大门欲通过大门,货物顶部距地面货物顶部距地面2.7m,装货宽度为装货宽度为2.4m.这辆汽这辆汽车能否顺利通过大门车能否顺利通过大门?若能若能,请你通过计算加以说明请你通过计算加以说明;若不能若不能,请简要说明理由请简要说明理由.解:如图,以解:如图,以AB所在的直线为所在的直线为x轴,轴,以以AB的垂直平分线为的垂直平分线为y轴,建立平面轴,建立平面直角坐标系直角坐标系.AB=4A(-2,0) B(2,0)OC=4.4 C(0,4.4)设抛物线所表示的二次函数为设抛物线所表示的二次函数为4 . 4axy2 抛物

5、线过抛物线过A(-2,0)04 . 4a4 1 . 1a 抛物线所表示的二次函数为抛物线所表示的二次函数为4 . 4x1 . 1y2 7 . 2816. 24 . 42 . 11 . 1y2 . 1x2 时,时,当当汽车能顺利经过大门汽车能顺利经过大门.小结小结一般步骤一般步骤: (1).建立适当的直角系建立适当的直角系,并将已知条件转化为点的并将已知条件转化为点的坐标坐标, (2).合理地设出所求的函数的表达式合理地设出所求的函数的表达式,并代入已知并代入已知条件或点的坐标条件或点的坐标,求出关系式求出关系式, (3).利用关系式求解实际问题利用关系式求解实际问题. 2.一场篮球赛中一场篮球

6、赛中,球员甲跳起投篮球员甲跳起投篮,如图如图2,已知球在已知球在A处出手处出手时离地面时离地面20/9 m,与篮筐中心与篮筐中心C的水平距离是的水平距离是7m,当球运行的水当球运行的水平距离是平距离是4 m时时,达到最大高度达到最大高度4m(B处)处),设篮球运行的路线设篮球运行的路线为抛物线为抛物线.篮筐距地面篮筐距地面3m. 问此球能否投中问此球能否投中? 1.有一辆载有长方体体状集装箱的货车要想通过洞拱横有一辆载有长方体体状集装箱的货车要想通过洞拱横截面为抛物线的隧道,如图截面为抛物线的隧道,如图1,已知沿底部宽,已知沿底部宽AB为为4m,高,高OC为为3.2m;集装箱的宽与车的宽相同都是;集装箱的宽与车的宽相同都是2.4m;集装箱;集装箱顶部离地面顶部离地面2.1m。该车能通过隧道吗?请说明理由。该车能通过隧道

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论