




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、DCBOEAAE BE= =AD BD AC BC CD是直径是直径 CDAB60在直径是在直径是20cm的的 中,中, AOB的度数是的度数是,那么弦,那么弦AB的弦心距是的弦心距是. D A B O5 3cmO弓形的弦长为弓形的弦长为6cm,弓形的高为,弓形的高为2cm,则,则这弓形所在的圆的半径为这弓形所在的圆的半径为. D C A B O134cm3cm已知已知P为为 O内一点,且内一点,且OP2cm,如果,如果 O的半径是的半径是,那么过,那么过P点的最短点的最短的弦等于的弦等于. E D C B A P O2 5cm圆是中心对称图形吗圆是中心对称图形吗? ?它的对称中心在哪里它的对
2、称中心在哪里? ?一、思考一、思考圆是中心对称图形,圆是中心对称图形,它的对称中心是圆心它的对称中心是圆心. .NO把圆把圆O O的半径的半径ONON绕圆心绕圆心O O旋转任意一个角度旋转任意一个角度 ,NON把圆把圆O O的半径的半径ONON绕圆心绕圆心O O旋转任意一个角度旋转任意一个角度 ,NON把圆把圆O O的半径的半径ONON绕圆心绕圆心O O旋转任意一个角度旋转任意一个角度 ,NON把圆把圆O O的半径的半径ONON绕圆心绕圆心O O旋转任意一个角度旋转任意一个角度 ,NON定理定理:把圆绕圆心旋转任意一个角度后,仍与原来的圆重合把圆绕圆心旋转任意一个角度后,仍与原来的圆重合。把圆
3、把圆O O的半径的半径ONON绕圆心绕圆心O O旋转任意一个角度旋转任意一个角度 ,由此可以看出,由此可以看出,点点NN仍落在圆上。仍落在圆上。 圆心角圆心角:我们把顶点在圆心的角叫做:我们把顶点在圆心的角叫做圆心角圆心角. .OBA二、概念二、概念如图中所示,如图中所示, AOB就是一个圆心角。就是一个圆心角。 如图,将圆心角如图,将圆心角AOBAOB绕圆心绕圆心O O旋转到旋转到AOBAOB的位置,你能的位置,你能发现哪些等量关系?为什么?发现哪些等量关系?为什么?根据旋转的性质,将圆心角根据旋转的性质,将圆心角AOB绕圆心绕圆心O旋转到旋转到AOB的位置时,显然的位置时,显然AOBAOB
4、,射线,射线OA与与OA重合,重合,OB与与OB重合而同圆的半径相等,重合而同圆的半径相等,OA=OA,OB=OB,从而点,从而点A与与A重合,重合,B与与B重合重合OABOABABAB三、探究三、探究.ABA B=因此,弧因此,弧AB与弧与弧A1B1 重合,重合,AB与与AB重合重合ABA1B1=同样,还可以得到:同样,还可以得到:在同圆或等圆中,如果两条弧相等,那么它们所对的在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角圆心角_, 所对的弦所对的弦_;在同圆或等圆中,如果两条弦相等,那么他们所对的在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角圆心角_,所对的弧,所对的弧_这样,
5、我们就得到下面的定理:这样,我们就得到下面的定理:在同圆或等圆中,相等的圆心角所对的弧相等,在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等所对的弦也相等相等相等相等相等相等相等相等相等同圆或等圆中,同圆或等圆中,两个圆心角、两两个圆心角、两条弧、两条弦中条弧、两条弦中有一组量相等,有一组量相等,它们所对应的其它们所对应的其余各组量也相余各组量也相等等四、定理四、定理证明:证明:AB=AC AB=ACAB=AC, , ABC ABC 等腰三角形等腰三角形又又ACB=60, ABC是等边三角形,是等边三角形,AB=BC=CA. AOBBOCAOC.ABCO五、例题五、例题例例1 如图在如
6、图在 O中,中,AB=AC ,ACB=60,求证求证:AOB=BOC=AOC. 1.如图,如图,AB、CD是是 O的两条弦的两条弦(1)如果)如果AB=CD,那么,那么_,_(2)如果)如果 = ,那么,那么_,_(3)如果)如果AOB=COD,那么,那么_,_(4)如果)如果AB=CD,OEAB于于E,OFCD于于F,OE与与OF相等吗?为什么?相等吗?为什么?CABDEFOAOBCOD= AB=CDAOBCOD=AB=CD相相 等等 因为因为ABAB= =CDCD ,所以,所以AOB=AOB=COD.COD. 又因为又因为AO=COAO=CO,BO=DOBO=DO, 所以所以AOB AOB
7、 COD.COD. 又因为又因为OEOE 、OFOF是是ABAB与与CDCD对应边上的高,对应边上的高,所以所以 OEOE = = OF.OF.六、练习六、练习CDABABCD=ABCD=2.如图,如图,AB是是 O的直径,的直径, , COD=35,求求AOE的度数的度数AOBCDE BOC= COD= DOE=35 1803 35AOE = 75=解:解:BCCD=DEBCCD=DE1弧弧n1n弧弧把圆心角等分成把圆心角等分成360份份, ,则每一份的圆心则每一份的圆心角是角是1.同时整个圆也被分成了同时整个圆也被分成了360360份份.则每一份这样的弧叫做则每一份这样的弧叫做1的弧的弧.
8、这样这样,1,1的圆心角对着的圆心角对着1 1的弧的弧, , 1 1的弧对着的弧对着1 1的圆心角的圆心角. . n n 的圆心角对着的圆心角对着n n的弧的弧, , n n 的弧对着的弧对着n n的圆心角的圆心角. .性质性质: :弧的度数和它所对圆心角的度数相等弧的度数和它所对圆心角的度数相等. .小结例例2 2:如图,在:如图,在OO中,弦中,弦ABAB所对的劣弧为圆的所对的劣弧为圆的 ,圆的半径为,圆的半径为4cm4cm,求,求ABAB的长的长OABC31OABCD如图,如图,AC与与BD为为 O的两条互的两条互 相垂直的直径相垂直的直径.求证:求证:AB=BC=CD=DA; AB=BC=CD=DA. AB=BC=CD=DA 证明证明: AC与与BD为为 O的两条互相垂直的直径的两条互
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 连锁药店经营课件
- 婚宴经典证婚人婚礼致辞
- 新质生产力土木
- 秋季学期校园文化建设计划
- 社团活动的成果展示计划
- 项目采购与合同管理第08章
- 生物教师教学观摩活动计划
- 戏说新质生产力
- 社会资本在急救体系中的作用计划
- 2025年武威货运驾驶员从业资格证考试题库答案
- 全友家居导购员销售流程及常用销售话术
- 2025年建筑施工安全管理人员安全生产考试题库
- 十万头生态养猪场项目可行性报告
- 2025年安全评价师职业资格考试真题回顾与模拟试题
- 2025年陕西省高考适应性检测(三)语文试题及参考答案
- 氟化工艺作业课件
- 2025年4月12日乌鲁木齐市人才引进面试真题及答案解析
- 大学高数函数试题及答案
- 湖北省武汉市2025届高中毕业生四月调研考试语文试卷及答案(武汉四调)
- 2024国家安全教育大学生读本题库
- 《春夜喜雨》PPT
评论
0/150
提交评论