高纯金属制备技术详解_第1页
高纯金属制备技术详解_第2页
高纯金属制备技术详解_第3页
高纯金属制备技术详解_第4页
高纯金属制备技术详解_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、高纯金属制备技术详解高纯金属是现代许多高、新技术的综合产物,虽然20世纪30年代便已出现“高纯物质”这一名称,但把高纯金属的研究和生产提高到重要日程,是在二次世界大战后,首先是原子能研究需要一系列高 纯金属,而后随着半导体技术、宇航、无线电电子学等的发展,对金 属纯度要求越来越高,大大促进了高纯金属生产的发展。纯度对金属有着三方面的意义。第一,金属的一些性质和纯度关系密切。纯铁质软,含杂质的铸铁才是坚硬的。另一方面,杂质又是 非常有害的,大多数金属因含杂质而发脆,对于半导体,极微量的杂 质就会引起材料性能非常明显的变化。锗、硅甲含有微量的 m、V族元素、重金属、碱金属等有害杂质,可使半导体器件

2、的电性能受到严 重影响。第二,纯度研究有助阐明金属材料的结构敏感性、杂质对缺 陷的影响等因素,并由此为开发预先给定材料性质的新材料设计创造 条件。第三,随着金属纯度的不断提高,将进一步揭示出金属的潜在 性能,如普通金属被是所有金属中最脆的金属。而在高纯时被便出现低温塑性,超高纯时更具有高温超塑性。超高纯金属的潜在性能的发 现,有可能开阔新的应用领域,在材料学方面打开新的突破口,为高 技术的延伸铺平道路。金属的纯度是相对于杂质而言的,广义上杂质包括化学杂质(元素) 和物理杂质(晶体缺陷)。但是,只有当金属纯度极咼时,物理杂质 的概念才是有意义的,因此生产上一般仍以化学杂质的含量作为评价 金属纯度

3、的标准,即以主金属减去杂质总含量的百分数表示,常用N(nine的第一字母)代表。如99.9999 %写为6N , 99.99999 %写 为7N。此外,半导体材料还用载流子浓度和低温迁移率表示纯度。金属用剩余电阻率 RRR和纯度级R表示纯度。国际上关于纯度的定义 尚无统一标准。一般讲,理论的纯金属应是纯净完全不含杂质的,并 有恒定的熔点和晶体结构。 但技术上任何金属都达不到不含杂质的绝 对纯度,故纯金属只有相对含义,它只是表明目前技术上能达到的标准。随着提纯水平的提高,金属的纯度在不断提高。例如,过去高纯 金属的杂质为10-6级(百万分之几),而超纯半导体材料的杂质达10 一9级(十亿分之几)

4、,并逐步发展到10 一 12级(一万亿分 之几)。 同时各个金属的提纯难度不尽相同,如半导体材料中称 9N以上为高纯,而难熔金属钨等达6N已属超高纯。高纯金属制取通常分两个步骤进行,即纯化(初步提纯),和超纯化(最终提纯)。生产法大致分为化学提纯和物理提姓两类。为获 高纯金属,有效除去难以分离的杂质,往往需要将化学提纯和物理提纯配合使用,即在物理提纯的同时,还进行化学提纯,如硅在无坩埚 区熔融时可用氢作保护气,如果在氢气中加入少量水蒸气,则水与硅 中的硼起化学反应,可除去物理提纯不能除去的硼。又如采用真空烧 结法提纯高熔点金属钽、铌等时,为了脱碳,有时需要配人比化学计量稍过量的氧,或为脱氧配人

5、一定数量的碳,这种方法又称为化学物理提纯。一、化学提纯化学提纯是制取高纯金属的基础。金属中的杂质主要靠化学方法清除,除直接用化学方法获得高纯金属外,常常是把被提纯金属先制成中间化合物(氧化物、卤化物等),通过对中间化合物的蒸馏、精馏、吸附、络合、结晶、歧化、氧化、还原等方法将化合物提纯到很高纯 度,然后再还原成金属,如锗、硅选择四氯化锗、三氧氢硅、硅烷(SiH4)作为中间化合物,经提纯后再还原成锗和硅。化学提纯方法很多,常用的列于表一表一:常用化学提纯方法方法内容沉淀包括沉淀*共沉淀、均一沉淀等金属置韓包拮按黒会属活动咗收序扎、(九Mg,Ah和、H、Hg、毎、Am用前面金属把后面的金JS从其中

6、置换出来萃取包括有机常剂莖取*终合幸取、萃取精馆等离子交换包括用离子交换桂幅"璃子交埃纤维、离子交换復戏及滦石比交募电化学方法也桔电解、控制屯位电解、电总析以攻电泳等化合物提纯包括化学铤移反砲,先側勒说亿合砌井经丄提纯,蛙一歩热分事、轨込原、金儒 热还原、氧化、堪解、色谱分离等备幷不同方法谨疔提纯包措荒*蒸瀚r诚堆蒸饰、蒸汽蒸谕、共沸蒸谕、亚溥蒸惰、疑馆匚當压升生、 真空升华等重结晶包括在水及其他有礼溶剂中的重结晶、分步结鼎等殂谱分离包括气相色谱、液相色谱、薄层色谴、干柱色谱(用活性炭、硅胶、氧化铝*分 子瓶硅藻土等作吸垂剂黔吸逍提纯)过滤包括徵孔漲膜,超滤膜及其他介贡过遊-'

7、;-.、物理提纯物理提纯主要利用蒸发、凝固、结晶、扩散、电迁移等物理过程除去杂质。物理提纯方法主要有真空蒸馏、真空脱气、区域熔炼、单晶法(参见半导体材料章)、电磁场提纯等,此外还有空间无重力熔炼提纯方法。物理提纯时,真空条件非常重要。高纯金属精炼提纯一般都要在 高真空和超高真空(10 6 一 10-8Pa )中进行,真空对冶金过程的重 要作用主要是: 为有气态生成物的冶金反应创造有利的化学热力 学和动力学条件,从而使在常压下难以从主金属中分离出杂质的冶金 过程在真空条件下得以实现;降低气体杂质及易挥发性杂质在金属中的溶解度,相应降低其在主金属中的含量;降低金属或杂质挥发所需温度,提高金属与杂质

8、问的分离系数;减轻或避免金属或其他反应剂与空气的作用,避免气相杂质对金属或合金的。污染。因此许多提纯方法,如真空熔炼(真空感应熔炼、真空电弧熔炼、真空电子束熔炼)、真空蒸馏、真空脱气等必须在真空条件下进行。1 真空蒸馏真空蒸馏是在真空条件下,利用主金属和杂质从同一温度下蒸气压和蒸发速度的不同, 控制适当的温度,使某种物质选择性地挥发和 选择性地冷凝来使金属纯化的方法,这种方法以前主要用来提纯某些低沸点的金属(或化合物),如锌、钙、镁、镓、硅、锂、硒、碲等,随着真空和超高真空技术的发展,特别是冶金高温高真空技术的发展,真空蒸馏也用于稀有金属和熔点较高的金属如铍、铬、钇、钒、铁、镍、钻等的提纯。蒸

9、馏的主要过程是蒸发和冷凝,在一定温度下,物质都有一定的饱和蒸气压,当气压中物质分压低于它在该温度下的饱和蒸,气压的蒸气压时,该物质便不断蒸发。蒸发的条件是不断供给被蒸发物质热量, 并排出产生的气体;冷凝是蒸发的逆过程,气态物质的饱和蒸气压随 温度下降而降低,当气态组分的分压大于它在冷凝温度下的饱和蒸气 压时,这种物质便冷凝成液相(或固相),为使冷凝过程进行到底,必须及时排出冷凝放出的热量。影响真空蒸馏提纯效果的主要因素是: 各组分的蒸气分压,分压差越大,分离效果越好; 蒸发和 冷凝的温度和动力学条件,一般温度降低可增大金属与杂质蒸气压的 差距,提高分离效果; 待提纯金属的成分,原金属中杂质含量

10、越 低,分离效果越好; 金属和蒸发和冷凝材料间的作用,要求蒸发冷凝材料本身有最低的饱和蒸气压;金属残余气体的相互作用; 蒸馏装置的结构; 真空蒸馏有增锅式和弟增锅式两种,无增锅 蒸馏一般通过电磁场作用将金属熔体悬浮起来(见图一),有关蒸馏工艺请参见上述元素的精制过程。图一:无坩埚蒸馏装置1绐料机构;2待提纯金属;3挡板;4阴极;5冷凝器;6遮热板;7金属收集器;8真空;9抽真空装置2 .真空脱气真空脱气是指在真空条件下脱除金属中气体杂质的过程。实际上 是降低气体杂质在金属中的溶解度。根据西韦茨定律,恒温下双原子 气体在金属中的溶解度和气体分压的平方根成正比。因此提高系统的真空度,便相当于降低气

11、体的分压,亦即能降低气体在金属中的溶解 度,而超过溶解度的部分气体杂质便会从金属中逸出而脱除。以担粉 真空热处理为例,在高真空(2.5 6口 Pa条件下,担的水分在100 一 200 C急剧挥发,600 - 700 C氢化物分解逸出,碱金属及其化合物 在1100 一 1600 C温度下挥发,大部分铁、镍、铬等以低熔点氧化物 形态挥发,2300 C时氮挥发逸出,对比氢、氮对金属亲和势大的氧, 则以加碳脱氧C +O =CO?)和以上杂质金属低价氧化物 MeON 的方式除去。真空脱气广泛用于高熔点金属钨、钼、钒、铌、钽、铼等的纯化。3 区域熔炼区域熔炼是一种深度提纯金属的方法,其实质是通过局部加热狭

12、长料锭形成一个狭窄的熔融区,并移动加热使此狭窄熔融区按一定方向沿 料锭缓慢移动,利用杂质在固相与液相同平衡浓度差异,在反复熔化和凝固的过程中,杂质便偏析到固相或液相中而得以除去或重新分布;熔区一般采用电阻加热,感应加热或电子束加热,下图为锗区域熔炼示意图<)不輕的妣杂展与焙融区域 移动的表豪方祠、(b)送城惦族开治何爲配幡卢生图二:锗的区域熔炼提纯示意图区域熔炼广泛用于半导体材料煌高熔点金属钨、钼、钽、铌的提纯,更用于高纯铝、镓、锑、铜、铁、银等金属的提纯。对含杂质约 1x10-3%的锗,在区域提纯6次后,高纯锗部分的杂质浓度可降到1x10 8%。钨单晶经5次区熔后可由40提高到2000

13、。4 .电迁移提纯电迁移是指金属和杂质离于在电场的作用下往一定方向迁移或扩散速度的差别来达到分离杂质的目的。是新近发展起来的用于深度提纯 金属的方法,其特点是分离间隙杂质(特别是氧、氮、碳等)的效果好,但目前仅应用于小量金属的提纯。将其和其他提纯方法结合使用 ,可获超高纯度的金属。将棒状样品通过流电, 母体金属和杂质离子便向一定方向移动,这时 离子的漂移速度为: V二UF式中,V为离子漂移速度;U为离子迁移率;F为作用于离子的外 力,它由电场作用力。和导电电子散射作用于离子的力组成。这些作 用力和离子有效电荷数有关。 依母体离子和杂质离子的电荷数不同租 扩散、漂移速度不同而达到分离目的。5 .

14、电磁场提纯在电磁场作用下深度提纯高熔点金属的技术越来越多地被采用。电磁场不限于对熔融金属的搅拌作用,更主要的是电磁场下可使熔融金属在结晶过程中获得结构缺陷的均匀分布,并细化晶粒结构。在半导体材料拉制单晶时,在定向结晶时熔体中存在温度波动,这种温度波动 会导致杂质的层状分布, 而一个很小的恒定磁场就足以消除这种温度 波动。在多相系统结晶时,利用电磁场可使第二相定向析出,生成类 似磁性复合材料的各向异性的组织结构,电磁场还用于悬浮熔炼, 这时电磁场起能源支撑作用和搅拌作用,利用杂质的蒸发和漂走第二相(氧化物、碳化物等)来纯化金属。由于不存在和容器接触对提纯金属造成的污染问题,被普遍用于几乎所有高熔

15、点金属的提纯,如钨、钼、钽、铌、钒、铼、锇、钉、锆等。6 .提纯方法的综合应用各个提纯方法都是利用金属的某个物理性质或化学性质和杂质元素间的差异而进行分离达到提纯目的的, 如真空蒸馏是利用金属和 杂质的饱和蒸气压和挥发速度的差异。 区域熔炼是利用杂质在固相和 液相间的溶解度差异而进行提纯分离的, 因而各个方法都有一定的长处(对某些杂质分离效果好)和短处(对另一些杂质分离效果差)。即使是同一个提纯方法,也因金属性质的不同,提纯效果差别很大, 如区域熔炼对高熔点金属的提纯效果好,但对某些稀土金属的提纯效果则不理想。欲获深度提纯金属的效果,一般需要综合应用多种提纯手段。在这方面,各个方法的合理结合应

16、用和先后顺序使用十分重要,通常是将电子束熔炼或蒸馏和区域熔炼或电迁移法相结合,即先进行电子束熔炼或蒸馏提纯, 再以区域熔炼或电迁移提纯作为终极提纯手 段,以被为例,为获超高纯铍,最好先多次蒸馏提纯,再真空熔炼,最后进行区域熔炼或电迁移提纯,经这样提纯后所得铍单晶纯度达99.999 %,残余电阻率 R> 1 000。在制取超纯锗时,一般先用化学法除去磷、砷、铝、硅、硼等杂质,再用区熔法提纯得到电子级纯锗 ;最后多次拉晶和切割才能达到 13N的纯度要求。下表为各种方法结合使用提纯金属铼的效果。表二:各种提纯方法提纯金属铼的效果提纯方法鞭余电匡率RHK铁粉末真空熔炼镣粉末蛊空谗炼+区越更炼静末在H:秤°气屮退火i耳空逛炼十区域遂炼氢还原提纯*真空熔炼氧还原提純+真空谊炼+区裁建炼氢还原提纯+真空更炼+电迁移区烬】(XX)600015 (XX)30 (XX)17 宇宙空间条件下提纯金属宇宙空间的开发为提纯金屑制造了新的机会。宇宙空间的超高真空(约10-1OPa)、超低温和基本上的无重力,为金属提纯提供了优越条件。在这种条件下,液态金属中将不会有对流的问题,结晶时杂质的 分布将只具有纯扩散性质,熔化金

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论