版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、小学奥数竞赛专题之利润与折扣竞赛专题选讲囊括了希望杯、华罗庚金杯、走进美妙的数学花园、EMC、全国小学数学联赛和数学解题能力展示等在内的国内主要数学竞赛的精华试题专题介绍工厂和商店有时减价出售商品,通常我们把它称为“打折扣”出售,几折就是百分之几十。利润问题也是一种常见的百分数应用题,商店出售商品总是期望获得利润,一般情况下,商品从厂家购进的价格称为本价,商家在成本价的基础上提高价格出售,所赚的钱称为利润,利润与成本的百分比称之为利润率。期望利润=成本价×期望利润率。经典例题例1、某商店将某种DVD按进价提高35%后,打出“九折优惠酬宾,外送50元出租车费”的广告,结果每台仍旧获利2
2、08元,那么每台DVD的进价是多少元?(B级)解:定价是进价的1+35%打九折后,实际售价是进价的135%×90%=121.5%每台DVD的实际盈利:208+50=258(元)每台DVD的进价258÷(121.5%-1)=1200(元)答:每台DVD的进价是1200元例2:一种服装,甲店比乙店的进货便宜10%甲店按照20%的利润定价,乙店按照15%的利润定价,甲店比乙店的出厂价便宜11.2元,问甲店的进货价 是多少元?(B级)分析:解:设乙店的成本价为1(1+15%)是乙店的定价(1-10%)×(1+20%)是甲店的定价(1+15%)-(1-10%)×(
3、1+20%)=7%11.2÷7%=160(元)160×(1-10%)=144(元)答:甲店的进货价为144元。例3、原来将一批水果按100%的利润定价出售,由于价格过高,无人购买,不得不按38%的利润重新定价,这样出售了其中的40%,此时因害怕剩余水果会变质,不得不再次降价,售出了全部水果。结果实际获得的总利润是原来利润的30.2%,那么第二次降价后的价格是原来定价的百分之几?(B级)分析:要求第二次降价后的价格是原来定价的百分之几,则需要求出第二次是按百分之几的利润定价。解:设第二次降价是按x%的利润定价的。38%×40%x%×(1-40%)=30.2
4、%X%=25%(1+25%)÷(1+100%)=62.5%答:第二次降价后的价格是原来价格的62.5% 练习:1、某商品按每个7元的利润卖出13个的钱,与按每个11元的利润卖出12个的钱一样多。这种商品的进货价是每个多少元?2、租用仓库堆放3吨货物,每月租金7000元。这些货物原计划要销售3个月,由于降低了价格,结果2个月就销售完了,由于节省了租仓库的租金,所以结算下来,反而比原计划多赚了1000元。问:每千克货物的价格降低了多少元?3、张先生向商店订购了每件定价100元的某种商品80件。张先生对商店经理说:“如果你肯减价,那么每减价1元,我就多订购4件。”商店经理算了一下,若减价5
5、,则由于张先生多订购,获得的利润反而比原来多100元。问:这种商品的成本是多少元?4、某商店到苹果产地去收购苹果,收购价为每千克1.20元。从产地到商店的距离是400千米,运费为每吨货物每运1千米收1.50元。如果在运输及销售过程中的损耗是10,商店要想实现25的利润率,零售价应是每千克多少元?5、小明到商店买了相同数量的红球和白球,红球原价2元3个,白球原价3元5个。新年优惠,两种球都按1元2个卖,结果小明少花了8元钱。问:小明共买了多少个球?6、某厂向银行申请甲、乙两种贷款共40万元,每年需付利息5万元。甲种贷款年利率为12,乙种贷款年利率为14。该厂申请甲、乙两种贷款的金额各是多少?7、
6、商店进了一批钢笔,用零售价10元卖出20支与用零售价11元卖出15支的利润相同。这批钢笔的进货价每支多少元?8、某种蜜瓜大量上市,这几天的价格每天都是前一天的80。妈妈第一天买了2个,第二天买了3个,第三天买了5个,共花了38元。若这10个蜜瓜都在第三天买,则能少花多少钱?9、商店以每双13元购进一批凉鞋,售价为14.8元,卖到还剩5双时,除去购进这批凉鞋的全部开销外还获利88元。问:这批凉鞋共多少双?10、体育用品商店用3000元购进50个足球和40个篮球。零售时足球加价9,篮球加价11,全部卖出后获利润298元。问:每个足球和篮球的进价是多少元?小学奥数竞赛专题之利率与利息竞赛专题选讲囊括
7、了希望杯、华罗庚金杯、走进美妙的数学花园、EMC、全国小学数学联赛和数学解题能力展示等在内的国内主要数学竞赛的精华试题 专题介绍国家规定,各种收入必须按照国家一定的额比例向国家缴纳一定的税款,应纳税额与收入的百分比叫做税率。我们把存入银行的钱叫做本金,取款时银行多付出来的钱叫做利息。总利息与本金的百分比叫做利率。经典例题例1、某个体商人以年利息14%的利率借别人4500元,第一年末偿还2130元,第二年以某种货物80件偿还一部分,第三年还2736元结清,他第二年末还债的货物每件价值多少元?解:根据“总利息=本金×利率×时间”第一年末的本利和:4500+4500
8、215;14%×1=5130(元)第二年起计息的本金:5130-2130=3000(元)第二年末的本利和:3000+3000×14%×1=3420(元)第三年的本利和为2736元,故第三年初的本金为:2736÷(1+14%)=2736÷1.14=2400(元)第二年末已还款的金额为3420-2400=1020(元)每件货物的单价为1020÷80=12.75(元)答:他第二年末还债的货物每件价值12.75元例2、小明于今年七月一日在银行存了活期储蓄100元,如果年利率是1.98%,到明年七月一日,小明可以得到多少利息?(A级)解:100
9、0×1.98%×1×(1-20%)=15.84(元)答:小明可以得到15.84元利息例3、买了8000元的国家建设债卷,定期3年,到期他取回本息一共10284元,这种建设债卷的年利率是多少?(B级)解:设年利率为x% (1) (单利)8000+8000×x%×3=10284X%=9.52%(2)(复利)8000(1+ x%)3=10284X%=9.52%答:这种建设债卷利率是9.52%小学奥数竞赛专题之平均数问题竞赛专题选讲囊括了希望杯、华罗庚金杯、走进美妙的数学花园、EMC、全国小学数学联赛和数学解题能力展示等在内的国内主要数学竞赛的精华试题
10、 专题介绍求平均数问题是小学学习阶段经常接触的一类典型应用题,如“求一个班级学生的平均年龄、平均身高、平均分数”。解答这类应用题时,主要是弄清楚总数、份数、一份数三量之间的关系,根据总数除以它相对应的份数,求出一份数,即平均数。经典例题例1 用4个同样的杯子装水,水面高度分别是4厘米、5厘米、7厘米和8厘米,这4个杯子水面平均高度是多少厘米?分析 求4个杯子水面的平均高度,就相当于把4个杯子里的水合在一起,再平均倒入4个杯子里,看每个杯子里水面的高度。解:(45+7+8)÷4=6(厘米)答:这4个杯子水面平均高度是6厘米。 例2 蔡琛在期末考试中,政治
11、、语文、数学、英语、生物五科的平均分是 89分.政治、数学两科的平均分是91.5分.语文、英语两科的平均分是84分.政治、英语两科的平均分是86分,而且英语比语文多10分.问蔡琛这次考试的各科成绩应是多少分?分析 解题关键是根据语文、英语两科平均分是84分求出两科的总分,又知道两科的分数差是10分,用和差问题的解法求出语文、英语各得多少分后,就可以求出其他各科成绩。解:英语:(84×2+10)÷2=89(分) 语文: 89-10=79(分) 政治:86×2-8983(分) 数学: 91.5×2-83100(分) 生物: 89×5-(897983
12、100)94(分)答:蔡琛这次考试英语、语文、政治、数学、生物的成绩分别是89分、79分、83分、100分、94分。例3 果品店把2千克酥糖,3千克水果糖,5千克奶糖混合成什锦糖.已知酥糖每千克4.40元,水果糖每千克4.20元,奶糖每千克7.20元.问:什锦糖每千克多少元?分析 要求混合后的什锦糖每千克的价钱,必须知道混合后的总钱数和与总钱数相对应的总千克数。解:什锦糖的总价:4.40×2+4.20×3+7.20×557.4(元)什锦糖的总千克数: 23510(千克)什锦糖的单价:57.4÷10=5.74(元)答:混合后的什锦糖每千克5.74元。我们把
13、上述这种平均数问题叫做“加权平均数”.例3中的5.74元叫做4.40元、4.20元、7.20元的加权平均数.2千克、3千克、5千克这三个数很重要,对什锦糖的单价产生不同影响,有权衡轻重的作用,所以这样的数叫做“权数”。例4 甲乙两块棉田,平均亩产籽棉185斤.甲棉田有5亩,平均亩产籽棉203斤;乙棉田平均亩产籽棉170斤,乙棉田有多少亩?分析 此题是已知两个数的加权平均数、两个数和其中一个数的权数,求另一个数的权数的问题.甲棉田平均亩产籽棉203斤比甲乙棉田平均亩产多18斤,5亩共多出90斤.乙棉田平均亩产比甲乙棉田平均亩产少15斤,乙少的部分用甲多的部分补足,也就是看90斤里面包含几个15斤
14、,从而求出的是乙棉田的亩数,即“权数”。解:甲棉田5亩比甲乙平均亩产多多少斤? (203-185)×5=90(斤) 乙棉田有几亩? 90÷(185-170)=6(亩)答:乙棉田有6亩。例5 已知八个连续奇数的和是144,求这八个连续奇数。分析 已知偶数个奇数的和是144.连续数的个数为偶数时,它的特点是首项与末项之和等于第二项与倒数第二项之和,等于第三项与倒数第三项之和即每两个数分为一组,八个数分成4组,每一组两个数的和是144÷436.这样可以确定出中间的两个数,再依次求出其他各数。解:每组数之和:144÷4=36中间两个数中较大的一个:(362)
15、247;219中间两个数中较小的一个:19-2=17这八个连续奇数为11、13、15、17、19、21、23和25。答:这八个连续奇数分别为:11、13、15、17、19、21、23和25。小学奥数竞赛专题之最短路线问题竞赛专题选讲囊括了希望杯、华罗庚金杯、走进美妙的数学花园、EMC、全国小学数学联赛和数学解题能力展示等在内的国内主要数学竞赛的精华试题 小学奥数竞赛专题之最优化问题竞赛专题选讲囊括了希望杯、华罗庚金杯、走进美妙的数学花园、EMC、全国小学数学联赛和数学解题能力展示等在内的国内主要数学竞赛的精华试题 专题介绍最优化概念反映了人类实践活动中十分普遍的
16、现象,即要在尽可能节省人力、物力和时间前提下,争取获得在可能范围内的最佳效果,因此,最优化问题成为现代数学的一个重要课题,涉及统筹、线性规划一排序不等式等内容。最优化问题不仅具有趣味性,而且由于解题方法灵活,技巧性强,因此对于开拓解题思路,增强数学能力很有益处。但解决这类问题需要的基础知识相当广泛,很难做到一一列举。因此,主要是以例题的方式让大家体会解决这些问题的方法和经验。 经典例题 例1 :货轮上卸下若干只箱子,总重量为10吨,每只箱子的重量不超过1吨,为了保证能把这些箱子一次运走,问至少需要多少辆载重3吨的汽车?分析 因为每一只箱子的重量不超过1吨,所以每一辆汽车可运走的箱子重
17、量不会少于2吨,否则可以再放一只箱子。所以,5辆汽车本是足够的,但是4辆汽车并不一定能把箱子全部运走。例如,设有13只箱子,所以每辆汽车只能运走3只箱子,13只箱子用4辆汽车一次运不走。因此,为了保证能一次把箱子全部运走,至少需要5辆汽车。例2: 用10尺长的竹竿来截取3尺、4尺长的甲、乙两种短竹竿各100根,至少要用去原材料几根?怎样截法最合算?分析 一个10尺长的竹竿应有三种截法:(1) 3尺两根和4尺一根,最省;(2) 3尺三根,余一尺;(3) 4尺两根,余2尺。为了省材料,尽量使用方法(1),这样50根原材料,可截得100根3尺的竹竿和50根4尺的竹竿,还差50根4尺的,最好选择方法(
18、3),这样所需原材料最少,只需25根即可,这样,至少需用去原材料75根。例3: 一个锐角三角形的三条边的长度分别是两位数,而且是三个连续偶数,它们个位数字的和是7的倍数,这个三角形的周长最长应是多少厘米?分析 因为三角形三边是三个连续偶数,所以它们的个位数字只能是0,2,4,6,8,并且它们的和也是偶数,又因为它们的个位数字的和是7的倍数,所以只能是14,三角形三条边最大可能是86,88,90,那么周长最长为86+88+90=264厘米。例4: 把25拆成若干个正整数的和,使它们的积最大。分析 先从较小数形开始实验,发现其规律:把6拆成3+3,其积为3×3=9最大;把7拆成3+2+2
19、,其积为3×2×2=12最大;把8拆成3+3+2,其积为3×3×2=18最大;把9拆成3+3+3,其积为3×3×3=27最大;这就是说,要想分拆后的数的乘积最大,应尽可能多的出现3,而当某一自然数可表示为若干个3与1的和时,要取出一个3与1重合在一起再分拆成两个2之和,因此25可以拆成3+3+3+3+3+3+3+2+2,其积37×22=8748为最大。 例5: A、B两人要到沙漠中探险,他们每天向沙漠深处走20千米,已知每人最多可携带一个人24天的食物和水,如果不准将部分食物存放于途中,问其中一个人最远可以深入沙漠
20、多少千米(要求最后两人返回出发点)?如果可以将部分食物存放于途中以备返回时取用呢?分析 设A走X天后返回,A留下自己返回时所需的食物,剩下的转给B,此时B共有(48-3X)天的食物,因为B最多携带24天的食物,所以X=8,剩下的24天食物,B只能再向前走8天,留下16天的食物供返回时用,所以B可以向沙漠深处走16天,因为每天走20千米,所以其中一人最多可以深入沙漠320千米。如果改变条件,则问题关键为A返回时留给B24天的食物,由于24天的食物可以使B单独深入沙漠12天的路程,而另外24天的食物要供A、B两人往返一段路,这段路为24÷4=6天的路程,所以B可以深入沙漠18天的路程,也
21、就是说,其中一个人最远可以深入沙漠360千米。例6: 甲、乙两个服装厂每个工人和设备都能全力生产同一规格的西服,甲厂每月用的时间生产上衣, 的时间生产裤子,全月恰好生产900套西服;乙厂每月用 的时间生产上衣, 的时间生产裤子,全月恰好生产1200套西服,现在两厂联合生产,尽量发挥各自特长多生产西服,那么现在每月比过去多生产西服多少套?分析 根据已知条件,甲厂生产一条裤子与一件上衣的时间之比为2:3;因此在单位时间内甲厂生产的上衣与裤子的数量之比为2:3;同理可知,在单位时间内乙厂生产上衣与裤子的数量之比是3:4;,由于,所以甲厂善于生产裤子,乙厂善于生产上衣。两厂联合生产,尽量发挥各自特长,
22、安排乙厂全力生产上衣,由于乙厂生产 月生产1200件上衣,那么乙厂全月可生产上衣1200÷ =2100件,同时,安排甲厂全力生产裤子,则甲厂全月可生产裤子900÷ =2250条。为了配套生产,甲厂先全力生产2100条裤子,这需要2100÷2250=月,然后甲厂再用月单独生产西服900×=60套,于是,现在联合生产每月比过去多生产西服(2100+60)-(900+1200)=60套例7 今有围棋子1400颗,甲、乙两人做取围棋子的游戏,甲先取,乙后取,两人轮流各取一次,规定每次只能取7P(P为1或不超过20的任一质数)颗棋子,谁最后取完为胜者,问甲、乙两人
23、谁有必胜的策略?分析 因为1400=7×200,所以原题可以转化为:有围棋子200颗,甲、乙两人轮流每次取P颗,谁最后取完谁获胜。解 乙有必胜的策略。由于200=4×50,P或者是2或者可以表示为4k+1或4k+3的形式(k为零或正整数)。乙采取的策略为:若甲取2,4k+1,4k+3颗,则乙取2,3,1颗,使得余下的棋子仍是4的倍数。如此最后出现剩下数为不超过20的4的倍数,此时甲总不能取完,而乙可全部取完而获胜。说明 (1)此题中,乙是“后发制人”,故先取者不一定存在必胜的策略,关键是看他们所面临的“情形”;(2)我们可以这样来分析这个问题的解法,将所有的情形-剩余棋子的
24、颗数分成两类,第一类是4的倍数,第二类是其它。若某人在取棋时遇到的是第二类情形,那么他可以取1或2或3,使得剩下的是第一类情形,若取棋时面临第一类情形,则取棋后留给另一个人的一定是第二类情形。所以,谁先面临第二类情形谁就能获胜,在绝大部分双人比赛问题中,都可采用这种方法。例8 有一个80人的旅游团,其中男50人,女30人,他们住的旅馆有11人、7人和5人的三种房间,男、女分别住不同的房间,他们至少要住多少个房间?分析 为了使得所住房间数最少,安排时应尽量先安排11人房间,这样50人男的应安排3个11人间,2个5人间和1个7人间;30个女人应安排1个11人间,2个7人间和1个5人间,共有10个房
25、间。 练习 1、十个自然数之和等于1001,则这十个自然数的最大公约数可能取的最大值是多少?(不包括0)2、在两条直角边的和一定的情况下,何种直角三角形面积最大,若两直角边的和为8,则三角形的最大面积为多少?3、5个人各拿一个水桶在自来水龙头前等候打水,他们打水所需要的时间分别是1分钟、2分钟、3分钟、4分钟和5分钟,如果只有一个水龙头适当安排他们的打水顺序,就能够使每个人排队和打水时间的总和最小,那么这个最小值是多少分钟?4、某水池可以用甲、乙两水管注水,单放甲管需12小时注满,单放乙管需24小时注满。若要求10小时注满水池,并且甲、乙两管合放的时间尽可能地少,则甲乙两管全放最少需要多少小时
26、?5、有1995名少先队员分散在一条公路上值勤宣传交通法规,问完成任务后应该在该公路的什么地点集合,可以使他们从各自的宣传岗位沿公路走到集合地点的路程总和最小?6、甲、乙两人轮流在黑板上写下不超过10的自然数,规则是禁止写黑板上已写过的数的约数,不能完成下一步的为失败者。问:是先写者还是后写者必胜?如何取胜?习题参考答案及思路分析 1、1001=7×11×13,可以7×13为公约数,这样这十个正整数可以是 ,91×2,它们的最大公约数为91。2、对于直角三角形而言,在直角边的和一定的情况下,等腰直角三角形的面积最大。若两直角边的和为8,则三角形的最大面积
27、为 ×4×4=8。3、为了使每个人排队和打水时间的总和最小,有两种方法:(1)排队的人尽量少;(2)每次排队的时间尽量少。因此应先让打水快的人打水,才能保证开始排队人多的时候,每个人等待的时间要少,故共需5×1+4×2+3×3+2×4+5=35(分钟)。4、由于甲、乙单独开放都不可能在10小时注满水池,因此必须有时间甲、乙全放。为了使它们合放的时间最少,应尽量开放甲管(速度快),这样甲开10小时注满水池的,余下 只能由乙注满,需。因此甲乙两管全放最少需要4小时。5、此问题我们可以从最简单问题入手,寻找规律,从而解决复杂问题,最后集合地
28、点应在中间地点。6、先写者存在获胜的策略。甲第一步写6,乙仅可写4,5,7,8,9,10中的一个,把它们分成数对(4,5),(8,10),(7,9)。如果乙写数对中的某个数,甲就写数对中的另一个数,则甲必胜。小学奥数竞赛专题之列车过桥问题竞赛专题选讲囊括了希望杯、华罗庚金杯、走进美妙的数学花园、EMC、全国小学数学联赛和数学解题能力展示等在内的国内主要数学竞赛的精华试题 专题介绍:列车过桥是生活中常见的现象,要正确理解这类问题,首先要懂得从车头上桥到车尾离开桥行驶的路程是多少。如果通过模拟操作,用文具盒代一座大桥,一支铅笔表示一列火车,用笔尖接触文具盒,表示车头上桥,然后将铅笔在文具盒上慢慢向前移动。直到笔尾离开文具盒,即车尾离开桥,可以看出铅笔向前移动的长,等于铅笔的长加文具盒的长,由此推知,列车从车头上桥到车尾离开桥行驶的路程是:桥长车长。环形跑道是学校中常见的,建议学习此讲内容之前,同学们可以先到学校的跑道上模拟练习一下。经典例题例1、一列长300米的火车以每分1080
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工厂独院出租合同范例
- 工民建施工合同范例
- 建设用地入市合同模板
- 小型基建简易合同范例
- 小型厂房合同模板
- 委托耗材配送合同范例
- 房产代理按揭合同模板
- 天津农村盖房合同范例
- 出口设备安装合同范例
- 工作合同范例范例
- 驾校科目二应急预案流程
- 人教版2023-2024学年五年级数学上册常考易考突围第三单元:小数除法简便计算“拓展型”专项练习(解析版)
- 妇幼保健院新生儿口腔护理操作考核评分标准
- 《狼王梦》好书推荐课件
- 购物中心行业营销策略方案
- 拉森钢板桩设计计算书
- 三年级上册第二单元日记 25篇
- 办公耗材采购 投标方案(技术方案)
- 29、顾客意见簿(表029)
- 生活离不开规则 教案
- 第9课+隋唐时期的经济、科技与文化-【中职专用】《中国历史》(高教版2023基础模块)
评论
0/150
提交评论