对数函数及其性质_第1页
对数函数及其性质_第2页
对数函数及其性质_第3页
对数函数及其性质_第4页
对数函数及其性质_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、对数函数及其性质要点一、对数函数的概念1函数y=logax(a0,a1)叫做对数函数.其中是自变量,函数的定义域是,值域为2判断一个函数是对数函数是形如的形式,即必须满足以下条件:(1)系数为1;(2)底数为大于0且不等于1的常数;(3)对数的真数仅有自变量要点诠释:(1)只有形如y=logax(a0,a1)的函数才叫做对数函数,像等函数,它们是由对数函数变化得到的,都不是对数函数。(2)求对数函数的定义域时应注意:对数函数的真数要求大于零,底数大于零且不等于1;对含有字母的式子要注意分类讨论。要点二、对数函数的图象与性质a00a1图象性质定义域:(0,+)值域:R过定点(1,0),即x=1时

2、,y=0在(0,+)上增函数在(0,+)上是减函数当0x1时,y0,当x1时,y0当0x1时,y0,当x1时,y0要点诠释:关于对数式logaN的符号问题,既受a的制约又受N的制约,两种因素交织在一起,应用时经常出错.下面介绍一种简单记忆方法,供同学们学习时参考.以1为分界点,当a,N同侧时,logaN0;当a,N异侧时,logaN1时,随a的增大,对数函数的图像愈靠近x轴;当0a1时,对数函数的图象随a的增大而远离x轴.(见下图)要点四、反函数1反函数的定义设分别为函数的定义域和值域,如果由函数所解得的也是一个函数(即对任意的一个,都有唯一的与之对应),那么就称函数是函数的反函数,记作,在中

3、,是自变量,是的函数,习惯上改写成()的形式函数()与函数()为同一函数,因为自变量的取值范围即定义域都是B,对应法则都为由定义可以看出,函数的定义域A正好是它的反函数的值域;函数的值域B正好是它的反函数的定义域要点诠释: 并不是每个函数都有反函数,有些函数没有反函数,如一般说来,单调函数有反函数2反函数的性质(1)互为反函数的两个函数的图象关于直线对称(2)若函数图象上有一点,则必在其反函数图象上,反之,若在反函数图象上,则必在原函数图象上【典型例题】类型一、对数函数的概念例1.下列函数中,哪些是对数函数?(1);(2)(3);(4);(5)类型二、对数函数的定义域求含有对数函数的复合函数的

4、定义域、值域,其方法与一般函数的定义域、值域的求法类似,但要注意对数函数本身的性质(如定义域、值域及单调性)在解题中的重要作用.例2. 求下列函数的定义域:(1); (2).类型三、对数函数的单调性及其应用利用函数的单调性可以:比较大小;解不等式;判断单调性;求单调区间;求值域和最值.要求同学们:一是牢固掌握对数函数的单调性;二是理解和掌握复合函数的单调性规律;三是树立定义域优先的观念.例3. 比较下列各组数中的两个值大小:(1);(2);(3)与;(4) 与(5)()【总结升华】比较两个对数值的大小的基本方法是:(1)比较同底的两个对数值的大小,常利用对数函数的单调性(2)比较同真数的两个对

5、数值的大小,常有两种方法:先利用对数换底公式化为同底的对数,再利用对数函数的单调性和倒数关系比较大小;利用对数函数图象的互相位置关系比较大小(3)若底数与真数都不同,则通过一个恰当的中间量来比较大小例4利用对数函数的性质比较、的大小举一反三:【变式1】 已知则( )ABCD类型四、函数的奇偶性例6. 判断下列函数的奇偶性.(1) (2).【思路点拨】判断函数奇偶性的步骤是:(1)先求函数的定义域,如果定义域关于原点对称,则进行(2),如果定义域不关于原点对称,则函数为非奇非偶函数。(2)求,如果,则函数是偶函数,如果,则函数是奇函数。【总结升华】此题确定定义域即解简单分式不等式,函数解析式恒等

6、变形需利用对数的运算性质.说明判断对数形式的复合函数的奇偶性,不能轻易直接下结论,而应注意对数式的恒等变形.【总结升华】此题定义域的确定可能稍有困难,函数解析式的变形用到了分子有理化的技巧,要求掌握.类型五、反函数例7求出下列函数的反函数(1);(2)【总结升华】反函数的定义域都由原函数的值域来确定的,特别是当反函数的定义域与由反函数解析式有意义所确定的自变量的取值范围不一致时,一定要注明反函数的定义域举一反三:【变式1】 若函数是函数且a1)的反函数,且,则( )(A) (B) (C) (D)2 类型六、利用函数图象解不等式例8若不等式,当时恒成立,求实数a的取值范围【思路点拨】画出函数的图

7、象与函数的图象,然后借助图象去求借。【总结升华】“数”是数学的特征,它精确、量化,最有说服力;而“形”则形象、直观,能简化思维过程,降低题目的难度,简化解题过程,把它们的优点集中在一起就是最佳组合本例中,利用图形的形象直观快速地得到答案,简化了解题过程正因为如此,数形结合成为中学数学的四个最基本的数学思想方法之一,因此我们必须熟练地掌握这一思想方法,并能灵活地运用它来分析和解决问题在涉及方程与不等式的问题时,往往构造两个函数与,则=的实数解等价于两个函数与的图象的交点的横坐标;而的的解等价于函数的图象在的图象下方的点的横坐标的取值范围利用图象的形象性、直观性,可使问题得到顺利地解决,而且分散了

8、问题解决的难度、简化了思维过程因此,我们要善于用数形结合的方法来解决方程与不等式的问题举一反三:【变式1】 当x(1,2)时,不等式恒成立,求a的取值范围类型七、对数函数性质的综合应用例9(1)已知函数的定义域为,求实数的取值范围;(2)已知函数的值域为,求实数的取值范围;(3)的定义域为,求实数的取值范围【思路点拨】与求函数定义域、值域的常规问题相比,本题属非常规问题,关键在于转化成常规问题.的定义域为R,即关于的不等式的解集为R,这是不等式中的常规问题.的值域为R与恒为正值是不等价的,因为这里要求取遍一切实数,即要求取遍一切正数,考察此函数的图象的各种情况,如图,我们会发现,使能取遍一切正数的条件是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论