章末综合测评(3)_第1页
章末综合测评(3)_第2页
章末综合测评(3)_第3页
章末综合测评(3)_第4页
章末综合测评(3)_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、章末综合测评(三)统计案例(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法中错误的是()A.如果变量x与Y之间存在着线性相关关系,则我们根据试验数据得到的点(xi,yi)(i1,2,n)将散布在某一条直线的附近B.如果两个变量x与Y之间不存在着线性关系,那么根据它们的一组数据(xi,yi)(i1,2,n)不能写出一个线性方程C.设x,Y是具有相关关系的两个变量,且Y关于x的线性回归方程为bxa,b叫做回归系数D.为使求出的线性回归方程有意义,可用统计检验的方法来判断变量Y与x之间是否存在线性

2、相关关系【解析】任何一组(xi,yi)(i1,2,n)都能写出一个线性方程,只是有的无意义.【答案】B2.下表是某厂14月份用水量(单位:百吨)的一组数据:月份x1234用水量y4.5432.5由散点图可知,用水量y与月份x之间有较好的线性相关关系,其线性回归方程是0.7x,则等于()【解析】样本点的中心为(2.5,3.5),将其代入线性回归方程可解得5.25.【答案】D3.对变量x,Y由观测数据(xi,yi)(i1,2,10)得散点图1.对变量u,V由观测数据(ui,vi)(i1,2,10)得散点图.由这两个散点图可以判断()图1A.变量x与Y正相关,u与V正相关B.变量x与Y正相关,u与V

3、负相关C.变量x与Y负相关,u与V正相关D.变量x与Y负相关,u与V负相关【解析】由这两个散点图可以判断,变量x与Y负相关,u与V正相关,选C.【答案】C4.在下列各量与量之间的关系中是相关关系的是()正方体的表面积与棱长之间的关系;一块农田的小麦的产量与施肥量之间的关系;人的身高与年龄之间的关系;家庭的收入与支出之间的关系;某家庭用水量与水费之间的关系.A.B.C.D.【解析】属于函数关系.【答案】D5.设有一个线性回归方程为210x,则变量x增加一个单位时()A.y平均减少2个单位B.y平均增加10个单位C.y平均增加8个单位D.y平均减少10个单位【解析】10是斜率的估计值,说明x每增加

4、一个单位时,y平均增加10个单位.【答案】B6.在吸烟与患肺病这两个事件是否相关的判断中,下列说法中正确的是()若2>6.635,则在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;从独立性检验可知在犯错误的概率不超过0.01前提下,认为吸烟与患肺病有关系时,我们说若某人吸烟,则他有99%的可能患有肺病;从统计量中得知在犯错误的概率不超过0.05的前提下认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误.A.B.C.D.【解析】2是检验吸烟与患肺病相关程度的量,是相关关系,而不是确定关系,是反映有关和无关的概率,故不正确;中

5、对“确定容许推断犯错误概率的上界”理解错误;正确.【答案】C7.已知变量x与y正相关,且由观测数据算得样本平均数3,3.5,则由该观测数据算得的线性回归方程可能是() 【导学号:62980070】A.0.4x2.3B.2x2.4C.2x9.5D.0.3x4.4【解析】因为变量x和y正相关,则回归直线的斜率为正,故可以排除选项C和D.因为样本点的中心在回归直线上,把点(3,3.5)的坐标分别代入选项A和B中的直线方程进行检验,可以排除B,故选A.【答案】A8.在一次对性别与是否说谎有关的调查中,得到如下数据,根据表中数据得到如下结论中正确的是()说谎不说谎合计男6713女8917合计141630

6、A.在此次调查中有95%的把握认为是否说谎与性别有关B.在此次调查中有95%的把握认为是否说谎与性别无关C.在此次调查中有99%的把握认为是否说谎与性别有关D.在此次调查中没有充分证据显示说谎与性别有关【解析】由表中数据得20.002 42<3.841.因此没有充分证据认为说谎与性别有关,故选D.【答案】D9.甲、乙两个班级进行一门课程考试,按照学生考试成绩优秀和不优秀统计成绩后,得到如下列联表:优秀不优秀合计甲班103545乙班73845合计177390利用独立性检验估计,你认为推断“成绩与班级有关系”错误的概率介于()A.0.30.4B.0.40.5C.0.50.6D.0.60.7【

7、解析】20.652 7>0.455,P(20.455)0.5,故选B.【答案】B10.以下是两个变量x和Y的一组数据:x12345678Y1491625364964则这两个变量间的线性回归方程为()A.x2B.C.9x15D.15x9【解析】根据数据可知每一个Y值对应一个x2值,故选A【答案】A11.以下关于线性回归的判断,正确的个数是()若散点图中所有点都在一条直线附近,则这条直线为回归直线;散点图中的绝大多数点都线性相关,个别特殊点不影响线性回归,如图2中的A,B,C点;已知回归直线方程为0.50x0.81,则x25时,y的估计值为11.69;回归直线方程的意义是它反映了样本整体的变

8、化趋势.图2A.0B.1 C.2D.3【解析】能使所有数据点都在它附近的直线不止一条,而据回归直线的定义知,只有按最小二乘法求得回归系数a,b得到的直线bxa才是回归直线,不对;正确;将x25代入0.50x0.81,解得11.69,正确;正确.【答案】D12.设某大学的女生体重y(单位:kg)与身高x(单位:cm)有线性相关关系,根据一组样本数据(xi,yi)(i1,2,n),用最小二乘法建立的回归方程为0.85x85.71,下列结论中不正确的是()A.y与x具有正的线性相关关系B.回归直线过样本点的中心(,)C.若该大学某女生身高增加1 cm,则其体重约增加0.85 kgD.若该大学某女生身

9、高为170 cm,则可断定其体重必为58.79 kg【解析】由回归方程为0.85x85.71知y随x的增大而增大,所以y与x具有正的线性相关关系;由最小二乘法建立回归方程的过程知xx(),所以回归直线过样本点的中心(,);利用回归方程可以估计总体,D不正确.【答案】D二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.已知一回归直线方程为1.5x45,x1,5,7,13,19,则_.【解析】因为(1571319)9,且1.545,所以1.5×94558.5.【答案】58.514.某大型企业人力资源部为了研究企业员工工作积极性和对企业改革态度的关系,随机抽取

10、了189名员工进行调查,所得数据如下表所示:积极支持企业改革不赞成企业改革合计工作积极544094工作一般326395合计86103189对于人力资源部的研究项目,根据上述数据试求2的观测值为_.【解析】根据列联表中的数据,得到210.76.【答案】10.7615.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如下表),求得回归方程0.67x54.9.零件数x(个)1020304050加工时间Y(min)62758189现发现表中有一个数据模糊看不清,请你推断出该数据的值为_. 【导学号:62980071】【解析】由表知30,设模糊不清的数据为m,

11、则(62m758189),因为0.6754.9,即0.67×3054.9,解得m68.【答案】6816.某地区恩格尔系数Y(%)与年份x的统计数据如下表:年份x2019201920192009恩格尔系数Y(%)4745.543.541从散点图可以看出Y与x线性相关,且可得回归方程为bx4 055.25,据此模型可预测2019年该地区的恩格尔系数Y(%)为_.【解析】由表可知2 007.5,44.25.因为b 4 055.25,即44.252 007.5b4 055.25,所以b2,所以回归方程为2x4 055.25,令x2 015,得25.25.【答案】25.25三、解答题(本大题共

12、6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)改革开放以来,我国高等教育事业有了迅速发展,有人记录了某村2019到2019年10年间每年考入大学人数所占该年参加高考总人数的百分比,为了便于计算,把2019年编号为0,2019年编号为1,2019年编号为10.如果把每年考入大学人数占该年参加高考总人数的百分比作为因变量,把年份从0到10作为自变量进行回归分析,可得到下面三条回归直线:农村0.42x1.80;县镇2.32x6.76;城市2.84x9.50.(1)对于农村青年来讲,系数等于0.42意味着什么?(2)在这10年间,农村、县镇和城市哪一个的大学入学率

13、增长最快?(3)预测2020年县镇的入学率是多少?【解】(1)0.42是回归直线的斜率,意味着对于农村考生,每年的入学率平均增长0.42%.(2)城市对应回归直线的斜率最大,所以城市的年入学率增长最快.(3)y2.32×146.7639.24,故2020年县镇的入学率为39.24%.18.(本小题满分12分)为研究学生的数学成绩与对学习数学的兴趣是否有关,对某年级学生作调查,得到如下数据:成绩优秀成绩较差合计兴趣浓厚643094兴趣不浓厚227395合计86103189学生的数学成绩好坏与对学习数学的兴趣是否有关?【解】由公式得:238.459.38.459>6.635,有99

14、%的把握说,学生的学习数学兴趣与数学成绩是有关的.19.(本小题满分12分)某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价x(元)88.28.48.68.89销量y(件)908483807568(1)求回归直线方程x,其中20,;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润销售收入成本)【解】(1)8.5,(908483807568)80.20,8020×8.5250,回归直线方程20x250.(2)设工厂获得的利润为L元,则Lx(20x25

15、0)4(20x250)202361.25,该产品的单位应定为元,工厂获得的利润最大.20.(本小题满分12分)对于表中的数据:x1234y1.94.16.17.9(1)作散点图,你从直观上得到什么结论?(2)求线性回归方程.【解】(1)如图,x,y具有很好的线性相关性.(2)因为2.5,5,xiyi60,x30,y120.04.故b2,ab 52×2.50,故所求的回归直线方程为2x.21.(本小题满分12分)某公司为确定下一年投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费xi和年销售量yi(i1,2,8

16、)数据作了初步处理,得到下面的散点图及一些统计量的值.图3(xi)2(wi)2xi)2(yi)(wi)2(yi)46.65636.8289.81.61469108.8表中wi,wi(1)根据散点图判断,yabx与ycd哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;(3)已知这种产品的年利率z与x、y的关系为z0.2yx.根据(2)的结果回答下列问题:年宣传费x49时,年销售量及年利润的预报值是多少?年宣传费x为何值时,年利率的预报值最大?附:对于一组数据(u1,v1),(u2,v2),(un,v

17、n),其回归线yu的斜率和截距的最小二乘估计分别为:, .【解】(1)由散点图可以判断,ycd适宜作为年销售量y关于年宣传费x的回归方程类型.(2)令w,先建立y关于w的线性回归方程.由于68,56368×6.8100.6,所以y关于w的线性回归方程为100.668w,因此y关于x的回归方程为100.668.(3) 由(2)知,当x49时,年销售量y的预报值100.668576.6,年利润z的预报值576.6×0.24966.32.根据(2)的结果知,年利润z的预报值0.2(100.668)xx13.620.12.所以当6.8,即x46.24时,取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.22.(本小题满分12分)电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:图4将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?非体育迷体育迷合计男女合计(2)将日均收看该体育节目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2人,求至少有1名女性观众

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论