版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、/*利用牛顿-拉夫逊迭代法(极坐标形式),计算复杂电力系统潮流,具有收敛性好,收敛速度快等优点。所有参数应归算至标幺值下。/*可计算最大节点数为100,可计算PQ,PV,平衡节点*/*可计算非标准变比和平行支路*/#include<stdio.h>#include<math.h>#include<stdlib.h>#define M 100 /*最大矩阵阶数*/#defineNl 100 /*迭代次数*/int i,j,k,a,b,c; /*循环控制变量*/int t,l; double P,Q,H,J; /*中间变量*/ int n, /*节点数*/ m,
2、 /*支路数*/ pq, /*PQ节点数*/ pv; /*PV节点数*/double eps; /*迭代精度*/double aaM,bbM,ccM,ddM,max, rr,tt; /*中间变量*/ double mo,c1,d1,c2,d2; /*复数运算函数的返回值*/ double GMM,BMM,YMM; /*节点导纳矩阵中的实部、虚部及其模方值*/double ykbMM,DM,dM,dUM; /*雅克比矩阵、不平衡量矩阵*/struct jd /*节点结构体*/ int num,ty; /* num为节点号,ty为节点类型*/ double p,q,S,U,zkj,dp,dq,du
3、,dj; /*节点有功、无功功率,功率模值,电压模值,阻抗角 牛顿-拉夫逊中功率不平衡量、电压修正量*/ jdM;struct zl /*支路结构体*/ int numb; /*numb为支路号*/ int p1,p2; /*支路的两个节点*/ double kx; /*非标准变比*/ double r,x; /*支路的电阻与电抗*/ zlM;FILE *fp1,*fp2;void data() /* 读取数据 */ int h,number; fp1=fopen("input.txt","r"); fscanf(fp1,"%d,%d,%d,%
4、d,%lfn",&n,&m,&pq,&pv,&eps); /*输入节点数,支路数,PQ节点数,PV节点数和迭代精度*/ for(i=1;i<=n;i+) /*输入节点编号、类型、输入功率和电压初值*/ fscanf(fp1,"%d,%d",&number,&h); if(h=1) /*类型h=1是PQ节点*/ fscanf(fp1,"%lf,%lf,%lf,%lfn",&jdi.p,&jdi.q,&jdi.U,&jdi.zkj); jdi.num=nu
5、mber; jdi.ty=h; if(h=2) /*类型h=2是pv节点*/fscanf(fp1,",%lf,%lf,%lfn",&jdi.p,&jdi.U,&jdi.zkj); jdi.num=number; jdi.ty=h;jdi.q=-1.567; if(h=3) /*类型h=3是平衡节点*/ fscanf(fp1,",%lf,%lfn",&jdi.U,&jdi.zkj); jdi.num=number; jdi.ty=h; for(i=1;i<=m;i+) /*输入支路阻抗*/ fscanf(fp1
6、,"%d,%lf,%d,%d,%lf,%lfn",&zli.numb,&zli.kx,&zli.p1,&zli.p2,&zli.r,&zli.x); fclose(fp1); if(fp2=fopen("output.txt","w")=NULL) printf(" can not open file!n"); exit(0); fprintf(fp2," 电力系统潮流计算n "); fprintf(fp2," * 原始数据 *n&quo
7、t;); fprintf(fp2,"=n"); fprintf(fp2," 节点数:%d 支路数:%d PQ节点数:%d PV节点数:%d 精度:%fn", n,m,pq,pv,eps); fprintf(fp2," -n"); for(i=1;i<=pq;i+) fprintf(fp2," PQ节点: 节点%d P%d=%f Q%d=%fn", jdi.num,jdi.num,jdi.p,jdi.num,jdi.q); for(i=pq+1;i<=pq+pv;i+) fprintf(fp2,"
8、; PV节点: 节点%d P%d=%f U%d=%f 初值Q%d=%fn", jdi.num,jdi.num,jdi.p,jdi.num,jdi.U,jdi.num,jdi.q); fprintf(fp2," 平衡节点: 节点%d e%d=%f f%d=%fn", jdn.num,jdn.num,jdn.U,jdn.num,jdn.zkj); fprintf(fp2," -n"); for(i=1;i<=m;i+) fprintf(fp2," 支路%d: 相关节点:%d,%d 非标准变比:kx=%f R=%f X=%f n&qu
9、ot;, i,zli.p1,zli.p2,zli.kx,zli.r,zli.x); fprintf(fp2," =n"); /*-复数运算函数-*/ double mozhi(double a0,double b0) /*复数求模值函数*/ mo=sqrt(a0*a0+b0*b0); return mo; double ji(double a1,double b1,double a2,double b2) /*复数求积函数 a1为电压模值,a2为阻抗角,a3为导纳实部,a4为导纳虚部*/ a1=a1*cos(b1); b1=a1*tan(b1); c1=a1*a2-b1*b
10、2; d1=a1*b2+a2*b1; return c1; return d1; double shang(double a3,double b3,double a4,double b4) /*复数除法求商函数*/ c2=(a3*a4+b3*b4)/(a4*a4+b4*b4); d2=(a4*b3-a3*b4)/(a4*a4+b4*b4); return c2; return d2; /*-计算节点导纳矩阵-*/ void Form_Y() for(i=1;i<=n;i+) /*节点导纳矩阵元素附初值*/ for(j=1;j<=n;j+) Gij=Bij=0; for(i=1;i&
11、lt;=n;i+) /*节点导纳矩阵的主对角线上的元素,非对地导纳加入相应的主对角线元素中(考虑非标准变比)*/ for(j=1;j<=m;j+) if(zlj.p1=i) if(zlj.kx=1) mozhi(zlj.r,zlj.x); if(mo=0) continue; shang(1,0,zlj.r,zlj.x); Gii+=c2; Bii+=d2; else mozhi(zlj.r,zlj.x); if(mo=0) continue; shang(1,0,zlj.r,zlj.x); Gii+=c2/zlj.kx+c2*(1-zlj.kx)/(zlj.kx*zlj.kx); Bi
12、i+=d2/zlj.kx+d2*(1-zlj.kx)/(zlj.kx*zlj.kx); else if(zlj.p2=i) if(zlj.kx=1) mozhi(zlj.r,zlj.x); if(mo=0) continue; shang(1,0,zlj.r,zlj.x); Gii+=c2; Bii+=d2; else mozhi(zlj.r,zlj.x); if(mo=0) continue; shang(1,0,zlj.r,zlj.x); Gii+=c2/zlj.kx+c2*(zlj.kx-1)/zlj.kx; Bii+=d2/zlj.kx+d2*(zlj.kx-1)/zlj.kx; fo
13、r(k=1;k<=m;k+) /*节点导纳矩阵非主对角线上(考虑非标准变比)的元素*/ if(zlk.kx=1) i=zlk.p1; j=zlk.p2; mozhi(zlk.r,zlk.x); if(mo=0) continue; shang(1,0,zlk.r,zlk.x); Gij-=c2; Bij-=d2; Gji=Gij; Bji=Bij; else i=zlk.p1; j=zlk.p2; mozhi(zlk.r,zlk.x); if(mo=0) continue; shang(1,0,zlk.r,zlk.x); Gij-=c2/zlk.kx; Bij-=d2/zlk.kx; G
14、ji=Gij; Bji=Bij; /*-输出节点导纳矩阵-*/ fprintf(fp2,"nn * 潮流计算过程 *n"); fprintf(fp2,"n =n"); fprintf(fp2,"n 节点导纳矩阵为:"); for(i=1;i<=n;i+) fprintf(fp2,"n "); for(k=1;k<=n;k+) fprintf(fp2,"%f",Gik); if(Bik>=0) fprintf(fp2,"+j"); fprintf(fp2,&q
15、uot;%f ",Bik); else Bik=-Bik; fprintf(fp2,"-j"); fprintf(fp2,"%f ",Bik); Bik=-Bik; fprintf(fp2,"n -n"); /*-牛顿拉夫逊-*/ void Calculate_Unbalanced_Para() for(i=1;i<=n;i+) if(jdi.ty=1) /*计算PQ节点不平衡量*/ t=jdi.num; cct=ddt=0; for(j=1;j<=n;j+) for(a=1;a<=n;a+) if(jda
16、.num=j) break; P=Q=0; P=jda.U*(Gtj*cos(jdi.zkj-jda.zkj)+Btj*sin(jdi.zkj-jda.zkj); Q=jda.U*(Gtj*sin(jdi.zkj-jda.zkj)-Btj*cos(jdi.zkj-jda.zkj); cct+=P; ddt+=Q; jdi.dp=jdi.p-jdi.U*cct; jdi.dq=jdi.q-jdi.U*ddt; if(jdi.ty=2) /*计算PV节点不平衡量*/ t=jdi.num; cct=ddt=0; for(j=1;j<=n;j+) for(a=1;a<=n;a+) if(j
17、da.num=j) break; P=Q=0; P=jda.U*(Gtj*cos(jdi.zkj-jda.zkj)+Btj*sin(jdi.zkj-jda.zkj); Q=jda.U*(Gtj*sin(jdi.zkj-jda.zkj)-Btj*cos(jdi.zkj-jda.zkj); cct+=P; ddt+=Q; jdi.dp=jdi.p-jdi.U*cct; jdi.q=jdi.U*ddt; for(i=1;i<=pq;i+) /*形成不平衡量矩阵DM*/ D2*i-1=jdi.dp; D2*i=jdi.dq; for(i=pq+1;i<=n-1;i+) Dpq+i=jdi.
18、dp;fprintf(fp2,"n 不平衡量为:"); /*输出不平衡量*/for(i=1;i<=pq;i+)t=jdi.num;fprintf(fp2,"n dp%d=%f",i,D2*t-1); fprintf(fp2,"n dq%d=%f",i,D2*t); for(i=pq+1;i<=n-1;i+)t=jdi.num;fprintf(fp2,"n dp%d=%f",i,Dpq+t); void Form_Jacobi_Matric() /*形成雅克比矩阵*/ for(i=1;i<=pq;i
19、+) /*形成pq节点子阵*/ for(j=1;j<n;j+) int i1=jdi.num; int j1=jdj.num; double Ui=jdi.U; double Uj=jdj.U; double zi=jdi.zkj; double zj=jdj.zkj; if(j<=pq) /*求j<=pq时的H、N、J、L */ if(i!=j) /*求i!=j时的H、N、J、L*/ ykb2*i-12*j-1=Ui*Uj*(Gi1j1*sin(zi-zj)-Bi1j1*cos(zi-zj); /* H */ ykb2*i-12*j=Ui*Uj*(Gi1j1*cos(zi-
20、zj)+Bi1j1*sin(zi-zj); /* N */ ykb2*i2*j-1=-ykb2*i-12*j; /* J */ ykb2*i2*j=ykb2*i-12*j-1; /* L */ else /*求i=j时的H、N、J、L*/ aai=0;bbi=0; for(k=1;k<=n;k+) int k1=jdk.num;H=J=0; H=jdk.U*(Gi1k1*sin(jdi.zkj-jdk.zkj)-Bi1k1*cos(jdi.zkj-jdk.zkj);J=jdk.U*(Gi1k1*cos(jdi.zkj-jdk.zkj)+Bi1k1*sin(jdi.zkj-jdk.zkj)
21、; aai=aai+H; bbi=bbi+J; ykb2*i-12*j-1=-Ui*(aai-Ui*(Gi1i1*sin(jdi.zkj-jdi.zkj)-Bi1i1*cos(jdi.zkj-jdi.zkj); /*H*/ ykb2*i2*j-1=Ui*(bbi-Ui*(Gi1i1*cos(jdi.zkj-jdi.zkj)+Bi1i1*sin(jdi.zkj-jdi.zkj); /*J*/ ykb2*i-12*j=ykb2*i2*j-1+2*Ui*Ui*Gi1i1; /*N*/ ykb2*i2*j=-ykb2*i-12*j-1-2*Ui*Ui*Bi1i1; /*L*/ else /*求j>
22、;pq时的H、J */ ykb2*i-1pq+j=Ui*Uj*(Gi1j1*sin(zi-zj)-Bi1j1*cos(zi-zj); /* H */ ykb2*ipq+j=-Ui*Uj*(Gi1j1*cos(zi-zj)+Bi1j1*sin(zi-zj); /* J */ for(i=pq+1;i<=n-1;i+) /*形成pv节点子阵*/ for(j=1;j<n;j+) int i1=jdi.num; int j1=jdj.num; double Ui=jdi.U; double Uj=jdj.U; double zi=jdi.zkj; double zj=jdj.zkj; if
23、(j<=pq) /*求j<=pq时的H、N */ ykbpq+i2*j-1=Ui*Uj*(Gi1j1*sin(zi-zj)-Bi1j1*cos(zi-zj); /* H */ ykbpq+i2*j=Ui*Uj*(Gi1j1*cos(zi-zj)+Bi1j1*sin(zi-zj); /* N */ else /*求j>pq时的H*/ if(i!=j) /*求i!=j时的H*/ ykbpq+ipq+j=Ui*Uj*(Gi1j1*sin(zi-zj)-Bi1j1*cos(zi-zj); /* H */ else /*求i=j时的H*/ aai=0; for(k=1;k<=n;
24、k+) int k1=jdk.num;H=0; H=jdk.U*(Gi1k1*sin(jdi.zkj-jdk.zkj)-Bi1k1*cos(jdi.zkj-jdk.zkj); aai=aai+H; ykbpq+ipq+j=-Ui*(aai-Ui*(Gi1i1*sin(jdi.zkj-jdi.zkj)-Bi1i1*cos(jdi.zkj-jdi.zkj); /*H*/ /*-输出雅克比矩阵-*/ fprintf(fp2,"nn 雅克比矩阵为: "); for(i=1;i<=(2*pq+pv);i+) fprintf(fp2,"n"); for(j=1
25、;j<=2*pq+pv;j+)fprintf(fp2," %f",ykbij); void Solve_Equations() /* 求解修正方程组 (LU分解法)*/ double lNlNl=0; /定义L矩阵 double uNlNl=0; /定义U矩阵 double yNl=0; /定义数组Y double xNl=0; /定义数组X double aNlNl=0; /定义系数矩阵 double bNl=0; /定义右端项 double sum=0; int i,j,k,s; int n;n=2*pq+pv; for(i=0; i<n; i+) for(
26、j=0; j<n; j+) aij=ykbi+1j+1; for(i=0; i<n; i+) bi=Di+1; for(i=0; i<n; i+) /*初始化矩阵l*/ for(j=0; j<n; j+) if(i=j) lij = 1; for(i=0;i<n;i+) /*开始LU分解*/ u0i=(float)(a0i); /*第一步:对矩阵U的首行进行计算*/for(k=0;k<n-1;k+) /*第二步:逐步进行LU分解*/ for(i=k+1;i<n;i+) /*对L的第k列进行计算*/ for(s=0,sum=0;s<n;s+) if
27、(s!=k) sum+=lis*usk; lik=(float)(aik-sum)/ukk);for(j=k+1;j<n;j+) /*对U的第k+1行进行计算*/ for(s=0,sum=0;s<n;s+) if(s!=k+1) sum+=lk+1s*usj;uk+1j=(float)(ak+1j-sum);y0=b0 ; /*回代法计算数组Y*/ for(i=1;i<n;i+) for(j=0,sum=0;j<i;j+) sum+=yj*lij; yi=(float)(bi-sum);xn-1=(float)(yn-1/un-1n-1); /*回代法计算数组X*/ f
28、or(i=n-2;i>=0;i-) for(j=n-1,sum=0;j>i;j-) sum+=xj*uij;xi=(float)(yi-sum)/uii); for(i=1; i<=n; i+) di=xi-1; max=fabs(d1); /*选出最大的修正量的值*/for(i=1;i<=n;i+) if(fabs(di)>max) max=fabs(di);void Niudun_Lafuxun() int z=1; fprintf(fp2,"n -极坐标形式的牛顿-拉夫逊迭代法结果:-n"); do max=1; if(z<Nl)&
29、amp;&(max>=eps) fprintf(fp2,"n 迭代次数: %dn",z); /*开始迭代计算*/ Calculate_Unbalanced_Para(); Form_Jacobi_Matric(); Solve_Equations();for(i=1;i<=pq;i+)jdi.zkj+=d2*i-1; jdi.U+=d2*i*jdi.U; for(i=pq+1;i<=n-1;i+) jdi.zkj+=dpq+i; fprintf(fp2,"nn 输出 d,dU: "); /*输出修正量的值*/ for(c=1;c
30、<=n;c+)for(a=1;a<=n;a+) if(jda.num=c)break; fprintf(fp2,"n");if(jda.ty=1) fprintf(fp2," 节点为 %2d d=%8.5f dU=%8.5f",c,d2*a-1,d2*a);if(jda.ty=2) fprintf(fp2," 节点为 %2d d=%8.5f",c,dpq+a);fprintf(fp2,"nn 输出迭代过程中的电压值: "); for(c=1;c<=n;c+)for(a=1;a<=n;a+)
31、if(jda.num=c)break; fprintf(fp2,"n U%d=%f",c,jda.U);fprintf(fp2,"%f",jda.zkj);fprintf(fp2,"nn -"); z+; while(z<Nl)&&(max>=eps); /*判断是否达到精度要求*/ void Powerflow_Result()int n1=jdn.num;fprintf(fp2,"nn =nn");fprintf(fp2," *潮流计算结果*");fprintf(
32、fp2,"nn =nn");fprintf(fp2,"n 各节点电压值: "); /*输出各节点的电压值*/ for(c=1;c<=n;c+)for(a=1;a<=n;a+) if(jda.num=c)break; fprintf(fp2,"n U%d=%f",c,jda.U);fprintf(fp2,"%f",jda.zkj);rr=tt=0; /*计算节点的注入功率*/for(i=1;i<=n;i+)int i1=jdi.num;ji(jdi.U,-jdi.zkj,Gn1i1,-Bn1i1);
33、rr+=c1;tt+=d1;ji(jdn.U,jdn.zkj,rr,tt);fprintf(fp2,"nn 各节点注入功率:n"); for(i=1;i<=pq;i+) int i1=jdi.num; fprintf(fp2," PQ节点: 节点%d S%d=%f", i1,i1,jdi.p); /*PQ节点注入功率*/ if(jdi.q>=0) fprintf(fp2,"+j%fn",jdi.q); else fprintf(fp2,"-j%fn",-jdi.q); for(i=pq+1;i<=
34、n-1;i+) int i1=jdi.num; fprintf(fp2," PV节点: 节点%d S%d=%f", i1,i1,jdi.p); /*PV节点注入功率*/ if(jdi.q>=0) fprintf(fp2,"+j%fn",jdi.q); else fprintf(fp2,"-j%fn",-jdi.q); fprintf(fp2," 平衡节点: 节点%d",jdn.num,jdn.num); /*平衡节点注入功率*/ fprintf(fp2," S%d=%f",n1,c1);i
35、f(d1>=0)fprintf(fp2,"+j%f",d1);else fprintf(fp2,"-j%f",-d1);fprintf(fp2,"nn 线路功率:n");rr=tt=0; for(i=1;i<=m;i+)int i1=zli.p1; /*计算线路功率*/int j1=zli.p2;aai=bbi=P=Q=0;for(a=1;a<=n;a+) if(jda.num=i1)break; for(b=1;b<=n;b+) if(jdb.num=j1)break;mozhi(zli.r,zli.x);i
36、f(mo=0)continue;shang(1,0,zli.r,zli.x);ji(jda.U/zli.kx/zli.kx,-jda.zkj,c2,-d2); /*考虑非标准变比*/P+=c1;Q+=d1;ji(jdb.U/zli.kx,-jdb.zkj,c2,-d2);P-=c1;Q-=d1;ji(jda.U,jda.zkj,P,Q);fprintf(fp2," 线路%d: %d-%d 的功率为: %f",i,i1,j1,c1);if(d1>=0)fprintf(fp2,"+j%fn",d1); else fprintf(fp2,"-j%fn",-d
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 煤炭采购合同中的付款条款
- 2024年人才交流协议
- 2024年商用户外广告牌安装合同
- 2024年制零售店员雇佣合同示范
- 2024年品牌推广与市场拓展合作协议
- 2024年合同新范本:公司日常经营主要协议汇编
- 2024年专属:皮卡租赁合同
- 2024年个人土地买卖纠纷预防协议
- 2024年医疗设备采购与维护协议
- 2024年个人受托办理公司业务协议
- 绵阳市高中2022级(2025届)高三第一次诊断性考试(一诊)语文试卷(含答案)
- 自然资源调查监测劳动和技能竞赛
- 2 0 2 4 年 7 月 国开专科《法理学》期末纸质考试 试题及答案
- 6.1 我对谁负责 谁对我负责 课件-2024-2025学年统编版道德与法治八年级上册
- 2023-2024学年天津市经开区国际学校八年级(上)期末物理试卷
- DB23T 3842-2024 一般化工企业安全生产标准化评定规范
- 期中模拟押题卷(1-3单元)(试题)-2024-2025学年苏教版数学六年级上册
- 环氧树脂项目可行性研究报告项目报告
- 公共政策分析第一章
- 2024-2025学年人教版数学三年级上册 第三单元 测量 单元测试卷(含答案)
- 2024新信息科技三年级第四单元:创作数字作品大单元整体教学设计
评论
0/150
提交评论