版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、抛物线的几何抛物线的几何性质性质结合抛物线结合抛物线y2=2px(p0)的标准方程和图形的标准方程和图形,探索探索其的几何性质其的几何性质:(1)范围范围(2)对称性对称性(3)顶点顶点类比探索类比探索x0,yR关于关于x轴对称轴对称,对称轴对称轴又叫抛物线的轴又叫抛物线的轴.抛物线和它的轴的交点抛物线和它的轴的交点.(4)离心率离心率(5)焦半径焦半径(6)通径通径始终为常数始终为常数1通过焦点且垂直对称轴的直线,与抛物线相通过焦点且垂直对称轴的直线,与抛物线相交于两点,连接这两点的线段叫做抛物线的交于两点,连接这两点的线段叫做抛物线的通径。通径。|PF|=x0+p/2xOyFP通径的长度通
2、径的长度:2P思考思考:通径是抛物线的焦点弦中最短的弦吗?特点特点1.抛物线只位于半个坐标平面内抛物线只位于半个坐标平面内,虽然它可以无虽然它可以无限延伸限延伸,但它没有渐近线但它没有渐近线;2.抛物线只有一条对称轴抛物线只有一条对称轴,没有对称中心没有对称中心;3.抛物线只有一个顶点、一个焦点、一条准线抛物线只有一个顶点、一个焦点、一条准线;4.抛物线的离心率是确定的抛物线的离心率是确定的,为为1;5.抛物线标准方程中的抛物线标准方程中的p对抛物线开口的影响对抛物线开口的影响.P越大越大,开口越开阔开口越开阔图图 形形方程方程焦点焦点准线准线 范围范围 顶点顶点 对称轴对称轴elFyxOlF
3、yxOlFyxOlFyxOy2 = 2pxp0y2 = -2pxp0 x2 = 2pyp0 x2 = -2pyp0)0 ,2(pF)0 ,2(pF )2, 0(pF)2, 0(pF2px 2px 2py 2pyx0yRx0yRy0 xRy 0 xR(0,0)x轴轴y轴轴1例题例题例例1. 顶点在坐标原点顶点在坐标原点,对称轴是坐标轴对称轴是坐标轴,并且过点并且过点M(2, )的抛物线有几条的抛物线有几条,求它的标准方程求它的标准方程,2 2例例2.斜率为斜率为1的直线的直线L经过抛物线经过抛物线 的焦点的焦点F,且与抛物线相交于且与抛物线相交于A,B两点两点,求线段求线段AB的长的长.当焦点在
4、当焦点在x(y)轴上轴上,开口方向不定时开口方向不定时,设为设为y2=2mx(m 0)(x2=2my (m0),可防止讨论可防止讨论y2 = 4x焦点弦的长度焦点弦的长度练习练习:1.过抛物线过抛物线 的焦点的焦点,作倾斜角为作倾斜角为的直线的直线,那么被抛物线截得的弦长为那么被抛物线截得的弦长为y2 = 8x2.过抛物线的焦点做倾斜角为过抛物线的焦点做倾斜角为 的直线的直线L,设设L交抛物线于交抛物线于A,B两点两点,(1)求求|AB|;(2)求求|AB|的最小值的最小值.045方程图形范围对称性顶点焦半径焦点弦的长度 y2 = 2pxp0y2 = -2pxp0 x2 = 2pyp0 x2
5、= -2pyp0lFyxOlFyxOlFyxOx0 yRx0 yRxR y0y0 xRlFyxO12pxx12()pxx12pyy12()pyy02px02px02py02py关于x轴对称 关于x轴对称 关于y轴对称关于y轴对称0,00,00,00,0.022正三角形的边长)上,求这个(两个顶点在抛物线点位于坐标原点,另外例、正三角形的一个顶ppxyyOxBA.|.0200. 02022|.222121212121212221222221212221212211轴对称关于,即线段由此可得,)(,即:,所以:又,),则,)、(,线上,且坐标分别为(在抛物、的顶点解:如图,设正三角形xAByyxx
6、pxxpxxxxpxpxxxyxyxOBOApxypxyyxyxBAOAB.342|.322.3330tan301121111pyABpypyxxyAOxABxoo,所以,且轴垂直于因为等腰直角三角形等腰直角三角形AOB内接于抛物线内接于抛物线y2=2px(P0),O为抛物线的顶点为抛物线的顶点,OAOB,那么那么AOB的面积为的面积为A. 8p2B. 4p2C. 2p2D. p2 1、抛物线的顶点在原点,对称、抛物线的顶点在原点,对称轴为轴为x轴,焦点在直线轴,焦点在直线3x-4y-12=0上,那上,那么抛物线通径长是么抛物线通径长是 . 2、一个正三角形的三个顶点,都在抛、一个正三角形的三
7、个顶点,都在抛物线物线 上,其中一个顶点为坐标上,其中一个顶点为坐标原点,那么这个三角形的面积为原点,那么这个三角形的面积为 。1648 324yx例例2 2、已知直线、已知直线l l:x=2px=2p与抛物线与抛物线 =2px(p0)=2px(p0)交于交于A A、B B两点,两点,求证:求证:OAOB.OAOB.2y证明:由题意得,证明:由题意得,A(2p,2p),B(2p,-2p)A(2p,2p),B(2p,-2p)所以所以 =1=1, =-1=-1因此因此OAOBOAOBOAKOBK推广推广1 1 若直线若直线l l过定点过定点(2p,0)(2p,0)且与抛物线且与抛物线 =2px(p0)=2px(p0)交于交于A A、B B两点,求证:两点,求证:OAOB.OAOB.2yxyOy y2 2=2px=2pxA AB BL:x=2pC(2p,0)C(2p,0)xyOy y2 2=2px=2pxA AB BlC(2p,0)证明:证明:设设l 的方程为的方程为y=k(x-2p) 或或x=2p 04)24(22222kpxppkxk24pxxBA2222164pxxpyyBABA24 pyyBA0BABAyyxx所以所以OAOB.OAOB.代入代入y2=2px得,得,可知可知又又小结小结:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年采购合同办公用品采购协议
- 影视剧摄制贷款合同参考文本
- 物业承包合同范本(基础版)
- 甘肃省靖远县2023-2024学年高三4月质量检查数学试题试卷
- 落后人员培训课程设计
- 防高坠“十条措施”专项方案
- 电力工程防潮层施工承包合同
- 能源行业加班管理
- 校园招聘代理合作协议
- 摩托车公司车位租赁合同范本
- GB/T 6500-2008毛绒纤维回潮率试验方法烘箱法
- GB/T 38883-2020无损检测主动式红外热成像检测方法
- GB/T 31288-2014铁尾矿砂
- GB/T 18488.1-2001电动汽车用电机及其控制器技术条件
- CRRT护理考核试题及答案
- 幼儿园国防教育课件动态PPT模板红色水墨渐变简约卡通
- 西方马克思主义哲(共74张PPT)
- 外贸业务员个人业务工作总结述职报告模板课件
- 血液透析中心火灾应急预案
- 《高空抛物行为的侵权责任(论文)8000字》
- 二年级数学22-分物游戏-优秀课件
评论
0/150
提交评论