知识型员工忠诚度的评估方法和技术_第1页
知识型员工忠诚度的评估方法和技术_第2页
知识型员工忠诚度的评估方法和技术_第3页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、知识型员工忠诚度的评估方法和技术测量和计算能使一家公司的经营理念物化 为实际行动.一家企业选择来加以测量,评估的东西,反映出它的价值观念,为企业 管理层确定了轻重缓急,同时也在塑造着员工的思维.一一弗雷德里克莱希赫尔 德知识型员工满意度,忠诚度的变化肯定会在公司产生一些反响,其中有些反响与 公司的利润密切相关作为管理者,你需要知道员工对你所做的事,你管理企业和 知识型员工的方式持什么态度,你需要及时或有预见的发现知识型员工工作态度 变化以改善公司的经营,这就需要对知识型员工的忠诚度进展评估,建立一个体系 或通过一些工具来测量.1 .知识型员工忠诚度评估的重要性了解,评估知识型员工的忠诚度对基于

2、忠诚管 理的企业来说,既是非常必要的,也是非常有益的.知识型员工忠诚度评估对于企 业有以下意义:1.1强化控制机制知识型员工忠诚度的评估首先是企业对人力资源管理 部门的一种绩效控制手段,但由于它是对知识型员工业绩表现等诸方面表现的评定与认 可,评估的过程又主要由人力资源部实施,它也是该部门行使控制职能的手段与表 现形式同时,它具有鼓励功能,企业对培养知识型员工忠诚的重视,企业的高知识 型员工忠诚度,使知识型员工特别是忠诚知识型员工体验到成就感,自豪感,从而进一步提高知识型员工整体的忠诚度.1.2促进沟通知识型员工忠诚度的评估,通过多方面(顾客,上,下级)等考察与测评, 可采用面谈,调查等渠道,

3、这一过程了解并评估忠诚情况,也会从侧面了解一些管 理上的问题 所取反映,说明和申诉,及时发现不利于培养忠诚度的问题,而后将评 估结果向知识型员工反响,并改良相关制度.这样对知识型员工忠诚度的评估便 具有促进上级与下级,知识型员工与顾客,知识型员工之间的沟通,了解彼此双方期望的作用1.3从侧面考察顾客忠诚度对顾客忠诚度的考察始终是企业制定开展战略过程 中的重要环节,而这本身需要考虑顾客态度,行为等多个变量.根据本书第二章的 论述,知识型员工忠诚度与顾客忠诚密切相关,对顾客忠诚度的培养有重要影响 对知识型员工忠诚度的科学评估,可为顾客忠诚度的评估提供一定的依据比方, 根据有关顾客忠诚度与知识型员工

4、忠诚度的 相关关系的定量结论,在计算出知识 型员工流失率的同时,就可估算出老顾客的流失率,从这一侧面考察了顾客忠诚度 1.4有利于企业确定经营策略,安康开展测量是经营的手段,测量和计算能使一家 公司的经营理念物化为实际行动.一家企业选择来加以测量,评估的东西,反映出 它的价值观念,为企业管理层确定了轻重缓急,同时也在塑造着知识型员工的思维 拥有长期忠诚知识型员工的企业可以获得较低的本钱,其顾客群也非常大.一般说 来,企业每年流失一定数量的知识型员工是正常的,而企业只要降低一定比率的知 识型员工流失率,企业利润就会多倍于该比率增长因此,从某种意义上看,低知识 型员工流失率作为一种策略往往比单纯的

5、低本钱策略有效,这即为企业经营策略 制定提供了参考另外,知识型员工忠诚度高的企业拟兼并知识型员工跳槽率高的 企业,这无疑需要准确的评估分析由此可见,A省研究院要长期,安康开展,适时进 展知识型员工忠诚度评估是极其必要的.1.5知识型员工忠诚度评估与绩效评估 的比拟绩效评估是企业根据知识型员工的职务说明,对知识型员工的工作业绩,包 括工作行为和工作效果,进展考察和评估.知识型员工忠诚度评估是企业从忠诚管 理角度对知识型员工的行为与态度(不仅仅在工作中)进展考察,评估.2.知识型员工忠诚度评估应解决的问题2.1正视人员流动正视人员流动即应转变对人员流动的观念,流动是绝对的,别指望留住所有人.知识型

6、员工的高流失率是忠诚度下滑的表现之一,在评估知识型员工整体的忠诚度时往往把流失率作为重要指标,由此不少企业在控制知识型员工的流动方面下了不少功夫.有不少人力资源主管把企业知识型员工的稳定作为自己追求的目标,认为人员流动就意味着管理的失败,这是对知识型员工忠诚的一种误解因为,人员的流动应该说是一种正 常的现象,而知识型员工的忠诚是相对而言的.知识型员工的相对忠诚有这样的表 现:在企业任职期间,勤勤恳恳,兢兢业业,为企业的开展尽职尽责;在企业不适合自 己或者是自己不适合企业而离职后,在一定的期限内能够保守企业的商业秘密,不从事有损企业利益的行为基于这样的表现,知识型员工的流动应该是合理的正常 的.

7、换言之,如果知识型员工有这样的表现,对忠诚的培养就应视为是成功的.现实 中,人们往往只强调知识型员工长期留在现有企业的外表现象,而忽略了忠诚知识 型员工是必须为企业作奉献的,即无视了 "主动忠诚".于是,不少企业里存在着大量 的"做一天和尚,撞一天钟",出工不出力,掐着指头过日子,按酬付劳的"忠诚"知识型 员工.这种忠诚是一种无益的忠诚.由此可见,人员不流动照样难以保证忠诚.从这 种意义上来说,人员流动并不一定是一件坏事.不仅如此,它还可能会促进企业人 力资源的开展与更新一些知识型员工跳槽必然给其他的知识型员工提供晋升的 时机,而最后

8、空缺的职位将会由招聘来的新知识型员工占有.这些新知识型员工又会给企业带来一些新的思维方式,使企业永远充满活力.更重要的是,一定程度上 知识型员工的流入流出,还可以激活企业内部竞争机制,保持知识型员工的高士气 所以,管理者应该学会如何在知识型员工忠诚与知识型员工流动之间求得一种平 衡.重要的是"要留住正确的人",如有着较强的专业技术或技能,丰富的从业经历及 出色的经营管理才能,对企业的生产经营起着关键作用的核心知识型员工.而且,应该注意的是知识型员工包括核心知识型员工,并不是固定的,唯一不变的组合,随着企业环境的变化,其也会不断地变换.今天的核心知识型员工,明天也许就成为企业

9、的累赘.因此,企业有必要根据环境变化和企业开展对局部知识型员工进展 淘汰由此带来的知识型员工流失那么会有利于企业开展2.2给跳槽者分类给跳槽者分类,是根据知识型员工具体职业开展状况,如实评价 知识型员工的忠诚问题.这方面做得最好的公司并不简单的计算知识型员工流失 率,而是先对跳槽的人进展分类 然后再按类型来分析流失问题.从以下对A省研究 院等几家设计单位跳槽人员的情况分析中发现,不同的进入背景,知识型员工流失 率也大不一样.分析说明如果是由其它XX调入者,在前一家公司停留时间少于4 年的人,在本院的流失率既高且流失的早,停留多于4年的设计人员,到了 A省研究院以后工作的年限也长;如果是根据广告

10、前来 应聘而被雇佣的,那么停留时间很短 短得无法弥补当初招聘并培训他的费用;如果是从大学直接招聘来的毕业生,那么 其忠诚度要比通过广告应聘的人高很多;各种不同背景中最为忠诚的设计人员,是 那些由本单位现有或前知识型员工引荐来的.根据这一研究结果,在评估知识型员 工整体忠诚度时,就要区分不同进入途径,赋予不同背景下的忠诚度不同的权重.摘要:如何比拟准确地评价企业员工的忠诚度是学术界和企业界亟待解决的问题。建立了企业员工忠诚度的评价指标体系,提出基于BP神经网络的企业员工忠诚度评价模型并给出仿真算例,最后指出此方法的缺点和进一步研究的方向。关键词:忠诚度,BP神经网络,指标体系在知识经济时代,人是

11、企业中最具活力的因素。员工对企业的忠诚度的上下是企业管 理好坏的重要指标,也是关系到企业能否获得持续开展的大事。员工的忠诚是企业生存的基 石,也是企业开展的核心竞争力所在。因此,建立合理、全面、科学的企业员工忠诚度评价 体系和评价方法就显得尤为重要。建立企业员工忠程度的评价指标体系根据客观性、综合性、系统性、可操作性等原那么,将员工忠诚度设为一级指标 ,设立4个二级指标,全面、系统地分 析影响各个二级指标的各种子因素,并设为三级指标,建立员工忠诚度的评价模型。(1)员工的 状况员工的状况是影响员工忠诚度最根本的因素,决定着员工对企业的责任感。此指标由员工技能与知识、员工目标的一致性程度、合作精

12、神和工作的意愿等组成。(2)企业的状况员工忠诚度与企业的自身状况成一定的正向关系,经营不善的企业人心松散,反之亦然。企业的状况主要由学习和培训的时机、薪酬制度、鼓励制度和企业文化与员工的默契程度四个局部组成。(3)人事关系状况当员工和上级以及同事建立了一种和谐关系时,员工就会有一种归属感,不会轻易跳槽到其他公司,如果跳槽那么需要付出较大本钱。它包括:上下级关系和同事关系。 领导者的影响力领导者影响的根底最主要地来自非权力来源,领导者自身的素质高能取得组织或群体成员的信任,组织或群体中的成员心甘情愿地追随领导者,形成员工的忠诚。此指标由品德因素、情感因素、资历因素和专长因素等组成。通过以上的定性

13、分析,本文提出的员工忠诚度的评价指标体系如表1所示: 表 1 员工忠诚度的评价指标体系目标层一级指标二级指标企业员工忠诚度员工的状况员工的知识与技能 x1 员工目标的一致程度 x2 合作精神 x3 工作意愿 x4 企业的状况学习培训的时机 x5 薪酬制度 x6 鼓励制度 x7 企业文 化与员工的默契程度 x8 人事关系状况同事关系 x9 上下级关系 x10 领导者的影响力品德因 素 x11 情感因素 x12 资历因素 x13 专长因素 x14 基于 BP 神经网络的企业员工忠诚度评价 模型 BP 神经网络应用于企业员工忠诚度评价时是把用来描述企业员工忠诚度根本特征的指 标信息作为神经网络的输入

14、向量X =xl, x2,A, xn将代表相应综合评价结果的值作为神经网络的输出 y 。然后再用足够的样本来训练这个网络,经过反复迭代 ,使不同的输入向量得到不同的输出量值,这样神经网络所持有的那组权系数值Wij、阈值(当i= 0时,Wij即代表阈值) ,便是网络经过自适应学习所得到的正确内部表示。BP 神经网络是一个简单而有效的网络。特征参量由输入层神经元输入,然后直接输出 ,而隐含层和输出层的每个神经元输入量为上一层神经元的输出的加权和。其学习的过程就是调整神经元间的连接权重,使得输出值等于或接近理想的目标值。一旦神经网络训练完毕 ,即可作为企业员工忠诚度评价的有效工 具。基于 BP 神经网

15、络的企业员工忠诚度评价指标体系的思路框架如图1 所示。图 1 企业员工忠诚度评价的BP神经网络构造模型(1)网络初始化。将各连接权值Wij和神经元阈值赋予较小的随机值。(2)提供训练集。给定p个学习样本的输入向量xp(p= 1,2,A,p)与期望的输出变量 yp(p =1,2, A,p):xp( X1,X2,A,Xn)T,yp=(Y1 ,Y2, A,Ym)。(3)计算和输出各种神经元实际 输出。输入样本评价指标信息(x1,x2,A,xn),计算实际输出:uj= + 0, yi=f(ui),其中f采用Sigmoid 函数 ,f(u) =1/1+exp(-u) 式中 ,n 是结点 j 的输入结点个

16、数 ;xi 是第 i 个输入结点的输出值 ;Wij 是第 i 个输入结点到结点 j 的权值 ;0j 代表第 j 个神经元的阈值。 (4) 调整输入层、输出层、隐 含层的连接权值。Wij(t + 1) = Wij(t) + njxi+ «Wij(t)-Wik(t-1)式中,Wij 是 t-1 层结点 i 到结点 j的连接权值和阈值;xi是结点i的输出;n是学习系数0< n<1; a是权值调整参数 0< ad 是一个与偏差有关的值。 j j=xj (1-xj) , 式中 xj 是结点 j 的实际输出值 ,m 是结点 j 的输出结点个 数。此时 ,误差样本从输出层向输入层

17、传播并沿途调整各层间连接权值和阈值,以使误差样本不断减少。 (5) 返回(2),进展迭代。 当期望输出与计算输出的误差小于某一容许值时 ,网络的学 习训练完毕,评价模型建立。基于BP神经网络的员工忠诚度评价模型的训练与仿真算例1网络模型的设计企业员工忠诚度评价指标体系共包括四项大指标14项子指标 ,即输入层神经元个数Pn=14。评价主体对企业员工忠诚度评价结果(优、良、中、及格、差)作为网络的唯一输出。因此 ,输出层神经元个数为 r=1 。对不同隐含层数的神经网络学习速度较快,而且Kosmogorov定理说明,在合理的构造和恰当的权值条件下,3层BP网络可以逼近任意的连续函数。所以,可以选取构

18、造相对简单的3层BP网络。根据经历公式:其中Pm ,Pn ,r分别为隐含层、输入层、输出层的神经元数目 丄为1 10之间的一个整数。从学习时间及次数与到达全局总误差的综合效果看 ,8个隐含层神经元比拟适宜。 2 样本选择与数据来源笔者曾在某 IT 公司实习, 数据主要来源于对此企业的实际调研、 专家评估等途径。 定量指标主要来源于此 公司的相关报表, 定性指标那么采用专家测定的方法获得的。 3 指标数据的归一化处理对于 评价指标ui U,设其论域为di =mi ,Mi,其中,mi和Mi分别为评价指标ui的最小值和最大值。 设ri= udi(xi)(i=1,2, An)为决策者对评价指标ui的属

19、性值xi的无量纲化值,且ri 0, 1。其中,udi(x)为定义在论域 di上的指标ui无量纲化的标准函数。根据评价指标的类型,可采用以下两种无量纲化标准函数 :(1) 本钱型指标无量纲化的标准函数 :ri = udi( x i) =1(xi < mi); (xi di);0(xi > Mi).(2) 效益型指标无量纲化的标准函数 :ri = udi( x i) = 1(xi > Mi); (xi di);O(xiw mi).对于某些只能进展定性分析的指标,可以采用确定指标评价等级隶属度的方法来实现其量化。其方法为:设ui为定性评价指标,ui相对于评价集A=(a1 ,a2 ,

20、A,an)的隶属度向量为:ri=(ri1 ,ri2 , A,rin)。此处隶属度向量可采用专家调查拼通过集值统计方法来确定,或者可以用模糊数学中确定隶属函数的方法来确定。在企业员工忠诚度定量评价指标体系中,指标评价集 A=( 好、较好、一般、较差、差 ),设采用的评价标度为B=0.90,0.70,0.50,0.30,0.10。因此,V =ri&#8226;B即为定性指标在给定标度B下的量化值。表2中的“ x1 ,x2 ,A,x3和各行数据分别表示各评价指标及其指标数据归一化后的数值。表2归一化后的企业员工忠诚度评价指标数据 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

21、x11 x12 x13 x14 训练 样本 0.006 0.237 0.3840.0810.178 0.575 0.252 0.1370.0950.2020.194 0.300 0.133 0.1350.273 0.390 0.203 0.0580.3440.421 0.169 0.436 0.2750.2290.2990.708 0.372 0.4050.234 0.355 0.269 0.3080.3510.200 0.044 0.128 0.0030.0070.0830.095 0.207 0.4830.077 0.227 0.072 0.0600.1210.688 0.093 0.16

22、7 0.2860.3550.4970.244 0.096 0.3420.038 0.575 0.125 0.1740.0120.037 0.328 0.170 0.2580.4470.1050.258 0.457 0.0690.043 0.271 0.277 0.4770.4090.496 0.315 0.078 0.4350.1600.6750.051 0.229 0.1960.267 0.481 0.096 0.2900.0920.018 0.004 0.199 0.4110.5450.1760.112 0.111 0.0880.080 0.224 0.606 0.269 0.054 0.

23、054 0.118 0.007 0.320 0.481 0.115 0.324 0.333 0.832 待评样本 0.030 0.046 0.524 0.1700.3610.009 0.298 0.140 0.5520.0980.2530.036 0.097 0.2850.341 0.287 0.672 0.2480.6510.058 0.271 0.397 0.3300.0470.2310.338 0.369 0.2840.313 0.251 0.024 0.2830.3030.294 0.037 0.257 0.2280.3770.2270.158 0.082 0.2710.377 0.410 0.876 0.2770.0020.061 0.911 0.881 0.3250.0980.3580.023 0.055 0.2334 网络模型的训练选取比拟典型的8组样本数据 (表中前 8组)作为训练样本 ,训练该网络 ,其余4组作为检测样本,模拟待评价的对象。在实际计算时,给定的学习精度为卩0.00001网络隐含层神经元为8个,训练次数N = 3000,权值调整参数 a=0.5,偏置值调整参数3=0.8,测试的评价结果与专家评价结果 (专家评价采用传统的综合等级评分法进展)如表 3所示,可以看出神经网络评价结果与专家评价结果根本

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论