


下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、几种常见的数列的通项公式的求法一 观察法例1:根据数列的前4项,写出它的一个通项公式:(1)9,99,999,9999,(2)(3)(4)解:(1)变形为:1011,1021,1031,1041, 通项公式为: (2) (3) (4).点评:关键是找出各项与项数n的关系。 二、公式法例2: 已知数列an是公差为d的等差数列,数列bn是公比为q的(qR且q1)的等比数列,若函数f (x) = (x1)2,且a1 = f (d1),a3 = f (d+1),b1 = f (q+1),b3 = f (q1),(1)求数列 a n 和 b n 的通项公式;解:(1)a 1=f (d1) = (d2)2
2、,a 3 = f (d+1)= d 2,a3a1=d2(d2)2=2d,d=2,an=a1+(n1)d = 2(n1);又b1= f (q+1)= q2,b3 =f (q1)=(q2)2,=q2,由qR,且q1,得q=2,bn=b·qn1=4·(2)n1例3. 等差数列是递减数列,且=48,=12,则数列的通项公式是( )(A) (B) (C) (D) 解析:设等差数列的公差位d,由已知,解得,又是递减数列, , ,故选(D)。例4. 已知等比数列的首项,公比,设数列的通项为,求数列的通项公式。解析:由题意,又是等比数列,公比为,故数列是等比数列, 点评:当已知数列为等差或
3、等比数列时,可直接利用等差或等比数列的通项公式,只需求得首项及公差公比。三、 叠加法例5:已知数列6,9,14,21,30,求此数列的一个通项。解 易知 各式相加得点评:一般地,对于型如类的通项公式,只要能进行求和,则宜采用此方法求解。例6. 若在数列中,求通项。解析:由得,所以,将以上各式相加得:,又所以 =四、叠乘法例7:在数列中, =1, (n+1)·=n·,求的表达式。解:由(n+1)·=n·得,=··= 所以例8. 已知数列中,前项和与的关系是 ,试求通项
4、公式。解析:首先由易求的递推公式:将上面n1个等式相乘得:点评:一般地,对于型如=(n)·类的通项公式,当的值可以求得时,宜采用此方法。五、Sn法利用 (2)例9:已知下列两数列的前n项和sn的公式,求的通项公式。(1)。 (2)解: (1)=3此时,。=3为所求数列的通项公式。(2),当时 由于不适合于此等式 。 点评:要先分n=1和两种情况分别进行运算,然后验证能否统一。六、待定系数法: 例10:设数列的各项是一个等差数列与一个等比数列对应项的和,若c1=2,c2=4,c3=7,c4=12,求通项公式cn解:设 例11. 已知数列中,其中b是与n无关的常数,且。求出用n和b表示的an的关系式。解析:递推公式一定可表示为的形式。由待定系数法知: 故数列是首项为,公比为的等比数列,故点评:用待定系数法解题时,常先假定通项公式或前n项和公式为某一多项式,一般地,若数列为等差数列:则,(b、为常数),若数列为等比数列,则,。七、辅助数列法例12:已知数的递推关系为,且求通项。解: 令则辅助数列是公比为2的等比数列即 例13:在数列中,求。解析:在两边减去,得 是以为首项,以为公比的等比数列,由累加法得= = 例14: 已
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 紧张性疲劳的临床护理
- 兄弟共同经营房产协议书
- it项目股权认购协议书
- 三人合伙美容合同范本
- 图书装卸配送合同范本
- 击剑机构学员合同范本
- 按揭车辆再次抵押协议书
- 烈士儿女房产继承协议书
- 房产销售雇佣合同范本
- 工厂承包工位合同范本
- 2025届辽宁省葫芦岛市第二次模拟考试二模英语试题(原卷版+解析版)
- 2025新疆交投集团所属子公司招56人笔试参考题库附带答案详解
- 2025-2030年中国铜合金散热器材料行业市场现状供需分析及投资评估规划分析研究报告
- 医疗器械销售流程与技巧
- 黑龙江省农村信用社联合社员工招聘考试真题2024
- 2025上海车展专题报告
- 纺织承包合同协议书
- 软件转让合同协议书
- 2025年北京市丰台区中考数学一模试卷
- 续签采购合同范本(标准版)
- 智能垃圾分类箱项目投资商业计划书范本(投资融资分析)
评论
0/150
提交评论