下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上相似三角形(辅助线的做法)在添加辅助线时,所添加的辅助线往往能够构造出一组或多组相似三角形,或得到成比例的线段或出等角,等边,从而为证明三角形相似或进行相关的计算找到等量关系。主要的辅助线有以下几种:作平行线例1:如图,D是ABC的BC边上的点,BD:DC=2:1,E是AD的中点,求:BE:EF的值. 解法一:过点D作CA的平行线交BF于点P,则 PE=EF BP=2PF=4EF 所以BE=5EF BE:EF=5:1.解法二:过点D作BF的平行线交AC于点Q, BE:EF=5:1.解法三:过点E作BC的平行线交AC于点S,解法四:过点E作AC的平行线交BC于点T,BD
2、=2DC BE:EF=5:1.练习:如图,D是ABC的BC边上的点,BD:DC=2:1,E是AD的中点, 连结BE并延长交AC于F, 求AF:CF的值.(答案2:3)解法一:过点D作CA的平行线交BF于点P,解法二:过点D作BF的平行线交AC于点Q,解法三:过点E作BC的平行线交AC于点S,解法四:过点E作AC的平行线交BC于点T,例2:如图,在ABC的AB边和AC边上各取一点D和E,且使ADAE,DE延长线与BC延长线相交于F,求证: (证明:过点C作CG/FD交AB于G)(该题关键在于ADAE这个条件怎样使用.由这道题还可以增加一种证明线段相等的方法:相似、成比例.)例3:如图,ABC中,
3、AB<AC,在AB、AC上分别截取BD=CE,DE,BC的延长线相交于点F,证明:AB·DF=AC·EF.分析:证明等积式问题常常化为比例式,再通过相似三角形对应边成比例来证明。不相似,因而要通过两组三角形相似,运用中间比代换得到,为构造相似三角形,需添加平行线。.方法一:过E作EM/AB,交BC于点M,则EMCABC(两角对应相等,两三角形相似).方法二:过D作DN/EC交BC于N.例4:在ABC中,D为AC上的一点,E为CB延长线上的一点,BE=AD,DE交AB于F。求证:EF×BC=AC×DF 证明:过D作DGBC交AB于G,则DFG和EFB
4、相似, BEAD, 由DGBC可得ADG和ACB相似, 即EF×BCAC×DF.例5:已知点D是BC的中点,过D点的直线交AC于E,交BA的延长线于F,求证:分析:利用比例式够造平行线,通过中间比得结论 .(或利用中点”倍长中线”的思想平移线段EC,使得所得四条线段分别构成两个三角形.)例6:已知:在等腰三角形ABC中,AB=AC,BD是高,求证:BC2=2AC·CD分析:本题的 重点在于如何解决“2”倍的 问题;让它归属一条线段,找到这一线段2倍是哪一线段.例7:已知:从直角三角形ABC的 直角顶点A向斜边BC引垂线,垂足为D,边AC的中点为E,直线ED与边AB
5、的延长线交于F,求证:AB:AC=DF:AF分析:利用前两题的 思想方法,借助中点构造中位线,利用平行与2倍关系的 结论,证明所得结论. 找到后以比例式所在三角形与哪个三角形相似. 例8:如图,ABC中,AD是BC边上中线,E是AC上一点,连接ED且交AB的延长线于F点.求证:AE:EC=AF:BF.分析:注意观察图形的 特殊性,有些像全等中,旋转的基本图形,因此可以没有相互关系的 成比例的四条线段转化为成比例的四条线段(通过全等找相等的线段)关键是要把成比例线段放在两个三角形中.例9:如图,平行四边形ABCD中,E为AB边中点,点F在AD边上,且AF:FD=1:2,EF交AC于G,求AG:G
6、C的值(构造线段相等转化比例式)例10:在ABC中,AB=AC,AD是中线,P是AD上一点,过C作CFAB,延长BP交AC于E,交CF于F,求证:BP²=PE·PF分析:在同一直线上的三条线段成比例,可以通过中间比转化,也可以通过线段相等,把共线的线段转化为两个三角形中的线段,通过相似证明.另外在证明等积式时要先转化为比例式观察相似关系,有利于证明. 例11:如图,梯形ABCD中,ADBC,AC、BD交于O点,BA、CD的延长线交于E点,连结EO并延长分别交AD、BC于N、M求证: BM=CM (证明线段相等的又一方法)作垂线例12:如图从 ABCD顶点C向AB和AD的延长
7、线引垂线CE和CF,垂足分别为E、F,求证:证明:过B作BMAC于M,过D作DNAC于N AM:AE=AB:AC (1) (1)+(2)得例13:ABC中,AC=BC,P是AB上一点,Q是PC上一点(不是中点),MN过Q且MNCP,交AC、BC于M、N,求证:证明:过P作PEAC于E,PFCB于F,则CEPF为矩形 PF EC AB=45° RtAEP=RtPFB EC=PF (1) 在ECP和CNM中CPMN于Q QCN+QNC=90°又 QCN+QCM=90° MCQ=CNQRtPECRtMCN 即 (2) 由(1)(2)得作延长线例14. 如图,在梯形ABC
8、D中,ADBC,若BCD的平分线CHAB于点H,BH=3AH,且四边形AHCD的面积为21,求HBC的面积。分析:因为问题涉及四边形AHCD,所以可构造相似三角形。把问题转化为相似三角形的面积比而加以解决。 解:延长BA、CD交于点P CHAB,CD平分BCD CB=CP,且BH=PH BH=3AH PA:AB=1:2 PA:PB=1:3 ADBC PADPBC例15. 如图,RtABC中,CD为斜边AB上的高,E为CD的中点,AE的延长线交BC于F,FGAB于G,求证:FG=CF·BF分析:欲证式即 由“三点定形”,BFG与CFG会相似吗?显然不可能。 (因为BFG为Rt),但由E为CD的中点,可设法构造一个与BFG相似的三角形来求解。不妨延长GF与AC的延长线交于H,则 又ED=EC FG=FH 又易证RtCFHRtGFB FG·FH=CF·BF FG=FH FG2=CF·BF作中线例16:如图,中,ABAC,AEBC于E,D在AC边上,若BD=DC=EC=1,求AC.解:取BC的中点M,连AM ABAC AM=CM 1=C 又
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 铝板幕墙安装工艺与方案
- 幼儿园大班健康《神奇的关节》课件
- 物流公司资产管理制度
- 汽车维修行业安全规范制度
- 广州市莲香楼有限公司厂房污染控制方案
- 2024年国际采购合同实务指南
- 2024年健康医疗服务区域联盟协议
- 金融服务行业知识产权管理方案
- (2024版)生物制药技术开发合同
- 公共交通站点中央空调施工方案
- 泵盖铸造工艺课程设计
- 爆破片日常检查及定期更换记录
- 无损检测Ⅱ级人员超声(UT)锻件门类专业知识试题及详解
- 销售大户监管办法
- 小型装配式冷库设计(全套图纸)
- 电动汽车无线充电技术
- 八六版高中英语课文全集
- 审计工作手册
- 防蛇安全教育培训
- 胰腺癌一病一品知识分享
- 【原创】《基于地理实践力培养的校本课程开发研究》中期报告
评论
0/150
提交评论