




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、师道教育高三极坐标练习题一解答题(共30小题)1在平面直角坐标系中,已知曲线C的参数方程方程为(为参数),在极坐标系中,点M的极坐标为(,)(I)写出曲线C的普通方程并判断点M与曲线C的位置关系;()设直线l过点M且与曲线C交于A、B两点,若|AB|=2|MB|,求直线l的方程2已知曲线C的极坐标方程是=4cos以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直l的参数方程是(t是参数)(1)将曲线C的极坐标方程化为直角坐标方程;(2)若直线l与曲线C相交于A、B两点,且|AB|=,求直线的倾斜角的值3已知曲线C的极坐标方程是=2cos,以极点为平面直角坐标系的原点,极轴
2、为x轴的正半轴,建立平面直角坐标系,直线L的参数方程是(t为参数)(1)求曲线C的直角坐标方程和直线L的普通方程;(2)设点P(m,0),若直线L与曲线C交于A,B两点,且|PA|PB|=1,求实数m的值4已知曲线C的极坐标方程是=1,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为为参数)(1)写出直线l与曲线C的直角坐标方程;(2)设曲线C经过伸缩变换得到曲线C,设曲线C上任一点为M(x,y),求的最小值5已知曲线C的极坐标方程为=4cos,以极点为原点,极轴为x轴正半轴建立平面直角坐标系,设直线l的参数方程为(t为参数)(1)求曲线C的直角坐标方程与直线l的普通方程
3、;(2)设曲线C与直线l相交于P、Q两点,以PQ为一条边作曲线C的内接矩形,求该矩形的面积6在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系已知曲线C1: (t为参数),C2:(为参数)()化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;()若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:(cos2sin)=7距离的最小值7极坐标系的极点为直角坐标系的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,已知曲线C的极坐标方程为=2(cos+sin)(1)求C的直角坐标方程;(2)直线l:为参数)与曲线C交于A,B两点,与y轴交于E,求
4、|EA|+|EB|的值8在平面直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知点A的极坐标为(,),直线l的极坐标方程为cos()=a,且点A在直线l上(1)求a的值及直线l的直角坐标方程;(2)若圆C的参数方程为(为参数),试判断直线l与圆C的位置关系9在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为sin2=acos(a0),过点P(2,4)的直线l的参数方程为 (t为参数),直线l与曲线C相交于A,B两点()写出曲线C的直角坐标方程和直线l的普通方程;()若|PA|PB|=|AB|2,求a的值10已知直线l:(t为参
5、数)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为=2cos(1)将曲线C的极坐标方程化为直坐标方程;(2)设点M的直角坐标为(5,),直线l与曲线C的交点为A,B,求|MA|MB|的值11已知曲线C:+=1,直线l:(t为参数)()写出曲线C的参数方程,直线l的普通方程()过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值12在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为=2cos,0,()求C的参数方程;()设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中
6、你得到的参数方程,求直线CD的倾斜角及D的坐标13将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C()写出C的参数方程;()设直线l:2x+y2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程14(选修44:坐标系与参数方程)已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为=2sin()把C1的参数方程化为极坐标方程;()求C1与C2交点的极坐标(0,02)15选修44:坐标系与参数方程在直角坐标系中,以坐标原点O为极点,x轴的正
7、半轴为极轴建立极坐标系已知点A的极坐标为,直线l的极坐标方程为,且点A在直线l上()求a的值及直线l的直角坐标方程;()圆C的参数方程为,试判断直线l与圆C的位置关系16选修44;坐标系与参数方程已知动点P,Q都在曲线C:上,对应参数分别为=与=2(02),M为PQ的中点()求M的轨迹的参数方程()将M到坐标原点的距离d表示为的函数,并判断M的轨迹是否过坐标原点17在平面直角坐标系xOy中,直线l的参数方程为( 为参数),曲线C的参数方程为(t为参数)试求直线l和曲线C的普通方程,并求出它们的公共点的坐标18在平面直角坐标系xOy中,曲线C1的参数方程为(为参数),曲线C2的参数方程为(ab0
8、,为参数)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:=与C1,C2各有一个交点当=0时,这两个交点间的距离为2,当=时,这两个交点重合(I)分别说明C1,C2是什么曲线,并求出a与b的值;(II)设当=时,l与C1,C2的交点分别为A1,B1,当=时,l与C1,C2的交点为A2,B2,求四边形A1A2B2B1的面积19在直角坐标系xOy中,直线C1的参数方程为(t为参数),以该直角坐标系的原点O为极点,x轴的正半轴为极轴的极坐标系下,圆C2的方程为=2cos+2sin()求直线C1的普通方程和圆C2的圆心的极坐标;()设直线C1和圆C2的交点为A,B,求弦AB的长20在直角坐标系x
9、Oy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为sin(+)=a,曲线C2的参数方程为,(为参数,0)()求C1的直角坐标方程;()当C1与C2有两个公共点时,求实数a的取值范围21已知曲线C1:(t为参数),C2:(为参数)(1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;(2)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:(t为参数)距离的最小值22已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程是=(1)写出直线l的极坐标方程与曲线C的普通方程;(2)若点 P是曲线C
10、上的动点,求 P到直线l的距离的最小值,并求出 P点的坐标23在直角坐标系xOy中,设倾斜角为的直线(t为参数)与曲线(为参数)相交于不同两点A,B(1)若,求线段AB中点M的坐标;(2)若|PA|PB|=|OP|2,其中,求直线l的斜率24在平面直角坐标系xOy中,已知C1:(为参数),将C1上的所有点的横坐标、纵坐标分别伸长为原来的和2倍后得到曲线C2以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:(cos+sin)=4(1)试写出曲线C1的极坐标方程与曲线C2的参数方程;(2)在曲线C2上求一点P,使点P到直线l的距离最小,并求此最小值
11、25选修44:坐标系与参数方程已知曲线C的极坐标方程是=2,以极点为原点,极轴为x轴的正半轴建立平面直角 坐标系,直线l的参数方程为(t为参数)()写出直线l与曲线C的直角坐标系下的方程;()设曲线C经过伸缩变换得到曲线C设曲线C上任一点为M(x,y),求的取值范围26已知曲线C1的极坐标方程是,曲线C2的参数方程是是参数)(1)写出曲线C1的直角坐标方程和曲线C2的普通方程;(2)求t的取值范围,使得C1,C2没有公共点27已知平面直角坐标系xoy中,以O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C1方程为=2sin;C2的参数方程为(t为参数)()写出曲线C1的直角坐标方程和C2的普通
12、方程;()设点P为曲线C1上的任意一点,求点P 到曲线C2距离的取值范围28已知直线l的参数方程:(t为参数),曲线C的参数方程:(为参数),且直线交曲线C于A,B两点()将曲线C的参数方程化为普通方程,并求=时,|AB|的长度;()已知点P:(1,0),求当直线倾斜角变化时,|PA|PB|的范围29在平面直角坐标系中,曲线C1的参数方程为(为参数),以O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2是圆心在极轴上且经过极点的圆,射线与曲线C2交于点(1)求曲线C1,C2的普通方程;(2)是曲线C1上的两点,求的值30己知圆C1的参数方程为(为参数),以坐标原点O为极点,x轴的正半轴为极轴建
13、立极坐标系,圆C2的极坐标方程为=2cos()()将圆C1的参数方程他为普通方程,将圆C2的极坐标方程化为直角坐标方程;()圆C1,C2是否相交,若相交,请求出公共弦的长;若不相交,请说明理由20161105高三极坐标练习题参考答案与试题解析一解答题(共30小题)1(2016江西校级二模)在平面直角坐标系中,已知曲线C的参数方程方程为(为参数),在极坐标系中,点M的极坐标为(,)(I)写出曲线C的普通方程并判断点M与曲线C的位置关系;()设直线l过点M且与曲线C交于A、B两点,若|AB|=2|MB|,求直线l的方程【分析】(I)利用同角三角函数的关系消参数得出曲线C的普通方程,将M点坐标代入曲
14、线C的方程即可判断点M与曲线C的位置关系;(II)由|AB|=2|MB|,可知M为AB的中点,将直线l的参数方程代入曲线的方程则方程有两个互为相反数的实根,根据根与系数的关系求出l的斜率,得出l方程【解答】解:(I)由(为参数)消得:,将化成直角坐标得M(1,1),故点M在曲线C内()设直线l的参数方程为(t为参数,为l的倾斜角)代入得:(3+sin2)t2+(8sin6cos)t5=0|AB|=2|MB|,M为AB的中点,即t1+t2=08sin6cos=0,tan=l的方程为:,即3x4y+7=02(2016鹰潭一模)已知曲线C的极坐标方程是=4cos以极点为平面直角坐标系的原点,极轴为x
15、轴的正半轴,建立平面直角坐标系,直l的参数方程是(t是参数)(1)将曲线C的极坐标方程化为直角坐标方程;(2)若直线l与曲线C相交于A、B两点,且|AB|=,求直线的倾斜角的值【分析】本题(1)可以利用极坐标与直角坐标 互化的化式,求出曲线C的直角坐标方程;(2)先将直l的参数方程是(t是参数)化成普通方程,再求出弦心距,利用勾股定理求出弦长,也可以直接利用直线的参数方程和圆的普通方程联解,求出对应的参数t1,t2的关系式,利用|AB|=|t1t2|,得到的三角方程,解方程得到的值,要注意角范围【解答】解:(1)cos=x,sin=y,2=x2+y2,曲线C的极坐标方程是=4cos可化为:2=
16、4cos,x2+y2=4x,(x2)2+y2=4(2)将代入圆的方程(x2)2+y2=4得:(tcos1)2+(tsin)2=4,化简得t22tcos3=0设A、B两点对应的参数分别为t1、t2,则,|AB|=|t1t2|=,|AB|=,=cos0,),或直线的倾斜角或3(2016洛阳二模)已知曲线C的极坐标方程是=2cos,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线L的参数方程是(t为参数)(1)求曲线C的直角坐标方程和直线L的普通方程;(2)设点P(m,0),若直线L与曲线C交于A,B两点,且|PA|PB|=1,求实数m的值【分析】(1)曲线C的极坐标方程是
17、=2cos,化为2=2cos,利用可得直角坐标方程直线L的参数方程是(t为参数),把t=2y代入+m消去参数t即可得出(2)把(t为参数),代入方程:x2+y2=2x化为:+m22m=0,由0,得1m3利用|PA|PB|=t1t2,即可得出【解答】解:(1)曲线C的极坐标方程是=2cos,化为2=2cos,可得直角坐标方程:x2+y2=2x直线L的参数方程是(t为参数),消去参数t可得(2)把(t为参数),代入方程:x2+y2=2x化为:+m22m=0,由0,解得1m3t1t2=m22m|PA|PB|=1=|t1t2|,m22m=±1,解得,1又满足0实数m=1,14(2016汕头模
18、拟)已知曲线C的极坐标方程是=1,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为为参数)(1)写出直线l与曲线C的直角坐标方程;(2)设曲线C经过伸缩变换得到曲线C,设曲线C上任一点为M(x,y),求的最小值【分析】(1)利用2=x2+y2,将=1转化成直角坐标方程,然后将直线的参数方程的上式化简成t=2(x1)代入下式消去参数t即可;(2)根据伸缩变换公式求出变换后的曲线方程,然后利用参数方程表示出曲线上任意一点,代入,根据三角函数的辅助角公式求出最小值【解答】解:(1)直线l的参数方程为为参数)由上式化简成t=2(x1)代入下式得根据2=x2+y2,进行化简得C:x
19、2+y2=1(2分)(2)代入C得(5分)设椭圆的参数方程为参数)(7分)则(9分)则的最小值为4(10分)5(2016邯郸二模)已知曲线C的极坐标方程为=4cos,以极点为原点,极轴为x轴正半轴建立平面直角坐标系,设直线l的参数方程为(t为参数)(1)求曲线C的直角坐标方程与直线l的普通方程;(2)设曲线C与直线l相交于P、Q两点,以PQ为一条边作曲线C的内接矩形,求该矩形的面积【分析】(1)利用公式x=cos,y=sin即可把曲线C的极坐标方程化为普通方程;消去参数t即可得到直线l的方程;(2)利用弦长|PQ|=2和圆的内接矩形,得对角线是圆的直径即可求出圆的内接矩形的面积【解答】解:(1
20、)对于C:由=4cos,得2=4cos,进而x2+y2=4x;对于l:由(t为参数),得,即(5分)(2)由(1)可知C为圆,且圆心为(2,0),半径为2,则弦心距,弦长,因此以PQ为边的圆C的内接矩形面积(10分)6(2016太原三模)在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系已知曲线C1: (t为参数),C2:(为参数)()化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;()若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:(cos2sin)=7距离的最小值【分析】()曲线C1: (t为参数),利用sin2t+cos2t=1即可
21、化为普通方程;C2:(为参数),利用cos2+sin2=1化为普通方程()当t=时,P(4,4),Q(8cos,3sin),故M,直线C3:(cos2sin)=7化为x2y=7,利用点到直线的距离公式与三角函数的单调性即可得出【解答】解:()曲线C1: (t为参数),化为(x+4)2+(y3)2=1,C1为圆心是(4,3),半径是1的圆C2:(为参数),化为C2为中心是坐标原点,焦点在x轴上,长半轴长是8,短半轴长是3的椭圆()当t=时,P(4,4),Q(8cos,3sin),故M,直线C3:(cos2sin)=7化为x2y=7,M到C3的距离d=|5sin(+)+13|,从而当cossin=
22、,sin=时,d取得最小值7(2016漳州二模)极坐标系的极点为直角坐标系的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,已知曲线C的极坐标方程为=2(cos+sin)(1)求C的直角坐标方程;(2)直线l:为参数)与曲线C交于A,B两点,与y轴交于E,求|EA|+|EB|的值【分析】(1)将极坐标方程两边同乘,进而根据2=x2+y2,x=cos,y=sin,可求出C的直角坐标方程;(2)将直线l的参数方程,代入曲线C的直角坐标方程,求出对应的t值,根据参数t的几何意义,求出|EA|+|EB|的值【解答】解:(1)曲线C的极坐标方程为=2(cos+sin)2=2cos+2sinx2+y
23、2=2x+2y即(x1)2+(y1)2=2(5分)(2)将l的参数方程代入曲线C的直角坐标方程,得t2t1=0,所以|EA|+|EB|=|t1|+|t2|=|t1t2|=(10分)8(2016梅州二模)在平面直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知点A的极坐标为(,),直线l的极坐标方程为cos()=a,且点A在直线l上(1)求a的值及直线l的直角坐标方程;(2)若圆C的参数方程为(为参数),试判断直线l与圆C的位置关系【分析】(1)利用点在直线上,代入方程求出a,利用极坐标与直角坐标的互化,求出直线的直角坐标方程(2)化简圆的参数方程与直角坐标方程,求出圆心
24、与半径,利用圆心到直线的距离与半径比较即可得到直线与圆的位置关系【解答】解:(1)点A的极坐标为(,),直线l的极坐标方程为cos()=a,且点A在直线l上可得:cos()=a,解得a=直线l的极坐标方程为cos()=,即:cos+sin=2,直线l的直角坐标方程为:x+y2=0(2)圆C的参数方程为(为参数),可得圆的直角坐标方程为:(x1)2+y2=1圆心(1,0),半径为:1因为圆心到直线的距离d=1,所以直线与圆相交9(2016开封四模)在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为sin2=acos(a0),过点P(2,4)的直线l的参
25、数方程为 (t为参数),直线l与曲线C相交于A,B两点()写出曲线C的直角坐标方程和直线l的普通方程;()若|PA|PB|=|AB|2,求a的值【分析】()把曲线C的极坐标方程、直线l的参数方程化为普通方程即可;()把直线l的参数方程代入曲线C的直角坐标方程中,得关于t的一元二次方程,由根与系数的关系,求出t1、t2的关系式,结合参数的几何意义,求出a的值【解答】解:()曲线C的极坐标方程sin2=acos(a0),可化为2sin2=acos(a0),即y2=ax(a0);(2分)直线l的参数方程为 (t为参数),消去参数t,化为普通方程是y=x2;(4分)()将直线l的参数方程代入曲线C的直
26、角坐标方程y2=ax(a0)中,得;设A、B两点对应的参数分别为t1,t2,则;(6分)|PA|PB|=|AB|2,t1t2=,=+4t1t2=5t1t2,(9分)即;解得:a=2或a=8(不合题意,应舍去);a的值为2(12分)10(2015湖南)已知直线l:(t为参数)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为=2cos(1)将曲线C的极坐标方程化为直坐标方程;(2)设点M的直角坐标为(5,),直线l与曲线C的交点为A,B,求|MA|MB|的值【分析】(1)曲线的极坐标方程即2=2cos,根据极坐标和直角坐标的互化公式得x2+y2=2x,即得它的直角坐标方程;(2
27、)直线l的方程化为普通方程,利用切割线定理可得结论【解答】解:(1)=2cos,2=2cos,x2+y2=2x,故它的直角坐标方程为(x1)2+y2=1;(2)直线l:(t为参数),普通方程为,(5,)在直线l上,过点M作圆的切线,切点为T,则|MT|2=(51)2+31=18,由切割线定理,可得|MT|2=|MA|MB|=1811(2014新课标I)已知曲线C:+=1,直线l:(t为参数)()写出曲线C的参数方程,直线l的普通方程()过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值【分析】()联想三角函数的平方关系可取x=2cos、y=3sin得
28、曲线C的参数方程,直接消掉参数t得直线l的普通方程;()设曲线C上任意一点P(2cos,3sin)由点到直线的距离公式得到P到直线l的距离,除以sin30°进一步得到|PA|,化积后由三角函数的范围求得|PA|的最大值与最小值【解答】解:()对于曲线C:+=1,可令x=2cos、y=3sin,故曲线C的参数方程为,(为参数)对于直线l:,由得:t=x2,代入并整理得:2x+y6=0;()设曲线C上任意一点P(2cos,3sin)P到直线l的距离为则,其中为锐角当sin(+)=1时,|PA|取得最大值,最大值为当sin(+)=1时,|PA|取得最小值,最小值为12(2014新课标II)
29、在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为=2cos,0,()求C的参数方程;()设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标【分析】(1)利用即可得出直角坐标方程,利用cos2t+sin2t=1进而得出参数方程(2)利用半圆C在D处的切线与直线l:y=x+2垂直,则直线CD的斜率与直线l的斜率相等,即可得出直线CD的倾斜角及D的坐标【解答】解:(1)由半圆C的极坐标方程为=2cos,0,即2=2cos,可得C的普通方程为(x1)2+y2=1(0y1)可得C的参数方程为(
30、t为参数,0t)(2)设D(1+cos t,sin t),由(1)知C是以C(1,0)为圆心,1为半径的上半圆,直线CD的斜率与直线l的斜率相等,tant=,t=故D的直角坐标为,即(,)13(2014辽宁)将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C()写出C的参数方程;()设直线l:2x+y2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程【分析】()在曲线C上任意取一点(x,y),再根据点(x,)在圆x2+y2=1上,求出C的方程,化为参数方程()解方程组求得P1、P2的坐标,可得
31、线段P1P2的中点坐标再根据与l垂直的直线的斜率为,用点斜式求得所求的直线的方程,再根据x=cos、y=sin 可得所求的直线的极坐标方程【解答】解:()在曲线C上任意取一点(x,y),由题意可得点(x,)在圆x2+y2=1上,x2+=1,即曲线C的方程为 x2+=1,化为参数方程为 (02,为参数)()由,可得 ,不妨设P1(1,0)、P2(0,2),则线段P1P2的中点坐标为(,1),再根据与l垂直的直线的斜率为,故所求的直线的方程为y1=(x),即x2y+=0再根据x=cos、y=sin 可得所求的直线的极坐标方程为cos2sin+=0,即 =14(2013新课标)(选修44:坐标系与参
32、数方程)已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为=2sin()把C1的参数方程化为极坐标方程;()求C1与C2交点的极坐标(0,02)【分析】()对于曲线C1利用三角函数的平方关系式sin2t+cos2t=1即可得到圆C1的普通方程;再利用极坐标与直角坐标的互化公式即可得到C1的极坐标方程;()先求出曲线C2的极坐标方程;再将两圆的方程联立求出其交点坐标,最后再利用极坐标与直角坐标的互化公式即可求出C1与C2交点的极坐标【解答】解:()曲线C1的参数方程式(t为参数),得(x4)2+(y5)2=25即为圆C1的普通方程,即x
33、2+y28x10y+16=0将x=cos,y=sin代入上式,得28cos10sin+16=0,此即为C1的极坐标方程;()曲线C2的极坐标方程为=2sin化为直角坐标方程为:x2+y22y=0,由,解得或C1与C2交点的极坐标分别为(,),(2,)15(2013福建)选修44:坐标系与参数方程在直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系已知点A的极坐标为,直线l的极坐标方程为,且点A在直线l上()求a的值及直线l的直角坐标方程;()圆C的参数方程为,试判断直线l与圆C的位置关系【分析】()根据点A在直线l上,将点的极坐标代入直线的极坐标方程即可得出a值,再利用极坐标转化
34、成直角坐标的转换公式求出直线l的直角坐标方程;()欲判断直线l和圆C的位置关系,只需求圆心到直线的距离与半径进行比较即可,根据点到线的距离公式求出圆心到直线的距离然后与半径比较【解答】解:()点A在直线l上,得,a=,故直线l的方程可化为:sin+cos=2,得直线l的直角坐标方程为x+y2=0;()消去参数,得圆C的普通方程为(x1)2+y2=1圆心C到直线l的距离d=1,所以直线l和C相交16(2013新课标)选修44;坐标系与参数方程已知动点P,Q都在曲线C:上,对应参数分别为=与=2(02),M为PQ的中点()求M的轨迹的参数方程()将M到坐标原点的距离d表示为的函数,并判断M的轨迹是
35、否过坐标原点【分析】(I)根据题意写出P,Q两点的坐标:P(2cos,2sin),Q(2cos2,2sin2),再利用中点坐标公式得PQ的中点M的坐标,从而得出M的轨迹的参数方程;(II)利用两点间的距离公式得到M到坐标原点的距离d=,再验证当=时,d=0,故M的轨迹过坐标原点【解答】解:(I)根据题意有:P(2cos,2sin),Q(2cos2,2sin2),M为PQ的中点,故M(cos+cos2,sin2+sin),求M的轨迹的参数方程为:(为参数,02)(II)M到坐标原点的距离d=(02)当=时,d=0,故M的轨迹过坐标原点17(2013江苏)在平面直角坐标系xOy中,直线l的参数方程
36、为( 为参数),曲线C的参数方程为(t为参数)试求直线l和曲线C的普通方程,并求出它们的公共点的坐标【分析】运用代入法,可将直线l和曲线C的参数方程化为普通方程,联立直线方程和抛物线方程,解方程可得它们的交点坐标【解答】解:直线l的参数方程为( 为参数),由x=t+1可得t=x1,代入y=2t,可得直线l的普通方程:2xy2=0曲线C的参数方程为(t为参数),化为y2=2x,联立,解得,于是交点为(2,2),18(2011辽宁)在平面直角坐标系xOy中,曲线C1的参数方程为(为参数),曲线C2的参数方程为(ab0,为参数)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:=与C1,C2各有
37、一个交点当=0时,这两个交点间的距离为2,当=时,这两个交点重合(I)分别说明C1,C2是什么曲线,并求出a与b的值;(II)设当=时,l与C1,C2的交点分别为A1,B1,当=时,l与C1,C2的交点为A2,B2,求四边形A1A2B2B1的面积【分析】(I)有曲线C1的参数方程为(为参数),曲线C2的参数方程为(ab0,为参数),消去参数的C1是圆,C2是椭圆,并利用当=0时,这两个交点间的距离为2,当=时,这两个交点重合,求出a及b(II)利用C1,C2的普通方程,当=时,l与C1,C2的交点分别为A1,B1,当=时,l与C1,C2的交点为A2,B2,利用面积公式求出面积【解答】解:()C
38、1是圆,C2是椭圆当=0时,射线l与C1,C2交点的直角坐标分别为(1,0),(a,0),因为这两点间的距离为2,所以a=3当时,射线l与C1,C2交点的直角坐标分别为(0,1)(0,b),因为这两点重合所以b=1()C1,C2的普通方程为x2+y2=1和当时,射线l与C1交点A1的横坐标为,与C2交点B1的横坐标为当时,射线l与C1,C2的两个交点A2,B2分别与A1,B1关于x轴对称,因此四边形A1A2B2B1为梯形故四边形A1A2B2B1的面积为19(2016离石区二模)在直角坐标系xOy中,直线C1的参数方程为(t为参数),以该直角坐标系的原点O为极点,x轴的正半轴为极轴的极坐标系下,
39、圆C2的方程为=2cos+2sin()求直线C1的普通方程和圆C2的圆心的极坐标;()设直线C1和圆C2的交点为A,B,求弦AB的长【分析】()把参数方程化为直角坐标方程,求出圆心的直角坐标,再把它化为极坐标()由()求得(1,)到直线xy+1=0 的距离d,再利用弦长公式求得弦长【解答】解:()由C1的参数方程消去参数t得普通方程为 xy+1=0,圆C2的直角坐标方程(x+1)2+=4,所以圆心的直角坐标为(1,),所以圆心的一个极坐标为(2,)()由()知(1,)到直线xy+1=0 的距离 d=,所以AB=2=20(2016焦作一模)在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极
40、坐标系,曲线C1的极坐标方程为sin(+)=a,曲线C2的参数方程为,(为参数,0)()求C1的直角坐标方程;()当C1与C2有两个公共点时,求实数a的取值范围【分析】()利用极坐标方程的定义即可求得;()数形结合:作出图象,根据图象即可求出有两交点时a的范围【解答】解:()曲线C1的极坐标方程为(sin+cos)=a,曲线C1的直角坐标方程为x+ya=0()曲线C2的直角坐标方程为(x+1)2+(y+1)2=1(1y0),为半圆弧,如图所示,曲线C1为一族平行于直线x+y=0的直线,当直线C1过点P时,利用得a=2±,舍去a=2,则a=2+,当直线C1过点A、B两点时,a=1,由图
41、可知,当1a2+时,曲线C1与曲线C2有两个公共点21(2016衡水校级一模)已知曲线C1:(t为参数),C2:(为参数)(1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;(2)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:(t为参数)距离的最小值【分析】()把参数方程化为直角坐标方程,再根据圆、椭圆的标准方程可得结论()利用点到直线的距离公式求得M到C3的距离=|sin(+)|,从而求得d取得最小值【解答】解:()把C1,C2的参数方程消去参数,化为普通方程分别为,C1为圆心是(4,3),半径是1的圆;C2为中心是坐标原点,焦点在x轴上,长半轴长是8
42、,短半轴长是3的椭圆()当时,P(4,4),设Q(8cos,3sin),故,C3为直线x2y7=0,求得M到C3的距离=|cossin|=|sin(+)|,其中,sin=,cos=从而当sin(+)=1,即当 时,d取得最小值为 22(2016衡阳三模)已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程是=(1)写出直线l的极坐标方程与曲线C的普通方程;(2)若点 P是曲线C上的动点,求 P到直线l的距离的最小值,并求出 P点的坐标【分析】本题(1)可以先消参数,求出直线l的普通方程,再利用公式将曲线C的极坐标方程化成平面直角坐标方程,(2
43、)利用点到直线的距离公式,求出P到直线l的距离的最小值,再根据函数取最值的情况求出P点的坐标,得到本题结论【解答】解:(1),xy=1直线的极坐标方程为:cossin=1即,即,cos2=sin,(cos)2=sin即曲线C的普通方程为y=x2(2)设P(x0,y0),P到直线的距离:当时,此时,当P点为时,P到直线的距离最小,最小值为23(2016河南一模)在直角坐标系xOy中,设倾斜角为的直线(t为参数)与曲线(为参数)相交于不同两点A,B(1)若,求线段AB中点M的坐标;(2)若|PA|PB|=|OP|2,其中,求直线l的斜率【分析】(1)把直线和圆的参数方程化为普通方程,联立后根据根与
44、系数的关系求出两交点中点的横坐标,待入直线方程再求中点的纵坐标;(2)把直线方程和圆的方程联立,化为关于t的一元二次方程,运用直线参数方程中参数t的几何意义,结合给出的等式求解直线的倾斜角的正切值,则斜率可求,【解答】解:(1)当时,由,得,所以直线方程为,由,得曲线C的普通方程为,设A(x1,y1),B(x2,y2)再由,得:13x224x+8=0,所以,所以M的坐标为(2)把直线的参数方程代入,得:,所以,由|PA|PB|=|t1t2|=|OP|2=7,得:,所以,所以,所以所以直线L的斜率为±24(2016衡水校级二模)在平面直角坐标系xOy中,已知C1:(为参数),将C1上的
45、所有点的横坐标、纵坐标分别伸长为原来的和2倍后得到曲线C2以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:(cos+sin)=4(1)试写出曲线C1的极坐标方程与曲线C2的参数方程;(2)在曲线C2上求一点P,使点P到直线l的距离最小,并求此最小值【分析】(1)把C1消去参数化为普通方程为 x2+y2=1,再化为极坐标方程根据函数图象的伸缩变换规律可得曲线C2的普通方程,再化为极参数方程(2)先求得直线l的直角坐标方程,设点P(cos,2sin),求得点P到直线的距离为d=,故当sin(+)=1时,即=2k+,kz时,点P到直线l的距离的最小
46、值,从而求得P的坐标以及此最小值【解答】解:(1)把C1:(为参数),消去参数化为普通方程为 x2+y2=1,故曲线C1:的极坐标方程为=1再根据函数图象的伸缩变换规律可得曲线C2的普通方程为+=1,即 +=1故曲线C2的极参数方程为 (为参数)(2)直线l:(cos+sin)=4,即 x+y4=0,设点P(cos,2sin),则点P到直线的距离为d=,故当sin(+)=1时,d取得最小值,此时,=2k+,kz,点P(1,),故曲线C2上有一点P(1,)满足到直线l的距离的最小值为25(2016晋中模拟)选修44:坐标系与参数方程已知曲线C的极坐标方程是=2,以极点为原点,极轴为x轴的正半轴建
47、立平面直角 坐标系,直线l的参数方程为(t为参数)()写出直线l与曲线C的直角坐标系下的方程;()设曲线C经过伸缩变换得到曲线C设曲线C上任一点为M(x,y),求的取值范围【分析】(I)利用2=x2+y2,将=1转化成直角坐标方程,然后将直线的参数方程的上式化简成t=2(x1)代入下式消去参数t即可;(II)根据伸缩变换公式求出变换后的曲线方程,然后利用参数方程表示出曲线上任意一点,代入,根据三角函数的辅助角公式求出其范围即可【解答】解:()直线l的普通方程x+y21=0曲线C的直角坐标方程x2+y2=4;(4分)()曲线C经过伸缩变换得到曲线C'的方程为,则点M参数方程为,代入x+y
48、得,x+y=2cos+=2sin=4sin()4,4x+y的取值范围是4,4(10分)26(2016南安市校级模拟)已知曲线C1的极坐标方程是,曲线C2的参数方程是是参数)(1)写出曲线C1的直角坐标方程和曲线C2的普通方程;(2)求t的取值范围,使得C1,C2没有公共点【分析】(1)把曲线C1的极坐标方程化为直角坐标方程是x2+y2=2,把曲线C2的参数方程化为普通方程是(2)结合图象,根据直线和圆的位置关系可得,当且仅当时,C1,C2没有公共点,由此求得t的取值范围【解答】解:(1)曲线C1的直角坐标方程是x2+y2=2,表示以原点(0,0)为圆心,半径等于 的圆曲线C2的普通方程是,表示一条垂直于x轴的线段,包括端点 (5分)(2)结合图象,根据直线和圆的位置关系可得,当且仅当
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025店铺转让合同协议书范本下载
- 上海中学高三数学试卷及答案大全
- 肇庆市实验中学高中历史二教案:第课改变世界的工业革命教案
- 2025科技咨询合同示范文本
- 机械产品标准化与模块化考核试卷
- 科技创新趋势的智能家居和智能穿戴设备市场考核试卷
- 编织品在建筑工程中的加固应用考核试卷
- 无线数据传输考核试卷
- 煤炭转化与化工产品高端化发展考核试卷
- 今日会计考试试题及答案
- 2023年护理知识竞赛题库有答案
- 2021年四川省泸州市中考理综物理试题【含答案、解析】
- 2025上半年江苏省连云港东海县事业单位招聘23人历年自考难、易点模拟试卷(共500题附带答案详解)
- 2025届湖北联投集团有限公司校园招聘299人笔试参考题库附带答案详解
- 超市安全用电培训
- (一模)2025届安徽省“江南十校”高三联考数学试卷(含官方答案)
- 电气火灾警示教育培训考试试题
- 物业安全知识培训内容
- 内科学 尿路感染学习课件
- (2025)驾照C1证考试科目一必考题库及参考答案(包过版)
- 2025年泰兴经济开发区国有企业招聘笔试参考题库含答案解析
评论
0/150
提交评论