111与三角形有关的线段(第1课时)_第1页
111与三角形有关的线段(第1课时)_第2页
111与三角形有关的线段(第1课时)_第3页
111与三角形有关的线段(第1课时)_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、备课人课型新授时间课题11.1 与三角形有关的线段 (第1课时)教学目标学习目标: 1理解三角形及其有关概念及三角形的分类. 2理解“三角形两边的和大于第三边”,并运用这个性质解决问题.教学重难点学习重点: “三角形两边的和大于第三边”的理解和运用.板书设计三边都不相等的三角形 三角形 等腰三角形 底边和腰不相等的等腰三角形 等边三角形 教学反思教 学 设 计二次备课一、理解三角形的有关概念问题1 三角形是我们熟悉的图形,观察下列图片,你能说一说三角形是怎样的图形吗?追问:对于教科书图11.1-1中的三角形,你能说出它的边、顶点与内角吗?AB C abc边:AB,BC,AC 或 c,a,b顶点

2、:A,B,C 内角:A ,B ,C二、理解三角形的分类问题2 我们知道,三角形按角可以分为锐角三角形、直角三角形和钝角三角形你能按照边的关系对三角形进行分类吗?三边都不相等的三角形 三角形 等腰三角形 底边和腰不相等的等腰三角形 等边三角形 追问按边分类后的特殊三角形之间有什么关系?它们的边和角怎样命名?三、课堂练习练习1图中有几个三角形?用符号表示这些三角形ABCDE 图中有5个三角形三角形的表示为: ABE, ABC, BEC, EDC, BDC练习2下列说法正确的有_. (1)锐角三角形是三条边都不相等的三角形; (2)直角三角形不是等腰三角形; (3)等腰三角形是等边三角形; (4)等

3、边三角形是等腰三角形四、探索与证明三角形三边的关系 问题3 如图,任意画一个ABC,一只小虫从点 B 出发,沿三角形的边爬到点C,它有几条路线可以选择?各条线路的长一样吗?你能运用所学知识解释你的结果吗?你能由此推出三条边之间有怎样的关系?BCAAB + AC BC, AC + BC AB, AB + BC AC 即三角形两边的和大于第三边追问由不等式移项可得 BC AB -AC, BC AC -AB由此你能得出什么结论?三角形两边的差小于第三边巩固并运用“三角形两边的和大于第三边” 例1下列长度的三条线段能否组成三角形?为什么?(1)3,4,5;(2)5,6,11;(3)5,6,10解:(1

4、)能因为3 + 45,3 + 54,4 + 53, 符合三角形两边的和大于第三边. (2)不能因为5 + 6 =11, 不符合三角形两边的和大于第三边. (3)能因为5 + 610,10 + 65,10 + 56, 符合三角形两边的和大于第三边. 追问解决这类问题我们通常用哪两条线段的和与第三条线段做比较就可以了?为什么?用较小两条线段的和与第三条线段做比较;若较小两条线段的和大于第三条线段,就能保证任意两条线段的和大于第三条线段.例2用一条长为18 cm的细绳围成一个等腰三角形(1)如果腰长是底边的2倍,那么各边的长是多少?解:设底边长为x cm,则腰长为2x cm x + 2x + 2x =18 解得 x =3.6. 如果4 cm长的边为底边,设腰长为x cm,则 4 + 2x = 18 解得 x = 7. 如果4 cm长的边为腰,设底边长为x cm, 则42 + x = 18. 解得 x = 10. 所以,三边长分别为3.6 cm,7.2 cm,7.2 cm因为4 + 410, 不符合三角形两边的和大于第三边, 所以不能围成腰长为4 的等腰三角形 由以上讨论可知, 可以围成底边长为4 cm

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论