中考数学圆的综合提高练习题压轴题训练附详细答案_第1页
中考数学圆的综合提高练习题压轴题训练附详细答案_第2页
中考数学圆的综合提高练习题压轴题训练附详细答案_第3页
中考数学圆的综合提高练习题压轴题训练附详细答案_第4页
中考数学圆的综合提高练习题压轴题训练附详细答案_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、中考数学圆的综合提高练习题压轴题训练附详细答案一、圆的综合1如图,点P在O的直径AB的延长线上,PC为O的切线,点C为切点,连接AC,过点A作PC的垂线,点D为垂足,AD交O于点E(1)如图1,求证:DAC=PAC;(2)如图2,点F(与点C位于直径AB两侧)在O上,连接EF,过点F作AD的平行线交PC于点G,求证:FG=DE+DG;(3)在(2)的条件下,如图3,若AE=DG,PO=5,求EF的长【答案】(1)证明见解析;(2)证明见解析;(3)EF=3【解析】【分析】(1)连接OC,求出OCAD,求出OCPC,根据切线的判定推出即可;(2)连接BE交GF于H,连接OH,求出四边形HGDE是

2、矩形,求出DE=HG,FH=EH,即可得出答案;(3)设OC交HE于M,连接OE、OF,求出FHO=EHO=45°,根据矩形的性质得出EHDG,求出OM=AE,设OM=a,则HM=a,AE=2a,AE=DG,DG=3a,求出ME=CD=2a,BM=2a,解直角三角形得出tanMBO,tanP=,设OC=k,则PC=2k,根据OP=k=5求出k=,根据勾股定理求出a,即可求出答案【详解】(1)证明:连接OC,PC为O的切线,OCPC,ADPC,OCAD,OCA=DAC,OC=OA,PAC=OCA,DAC=PAC;(2)证明:连接BE交GF于H,连接OH,FGAD,FGD+D=180&#

3、176;,D=90°,FGD=90°,AB为O的直径,BEA=90°,BED=90°,D=HGD=BED=90°,四边形HGDE是矩形,DE=GH,DG=HE,GHE=90°,HEF=FEA=BEA=45°,HFE=90°HEF=45°,HEF=HFE,FH=EH,FG=FH+GH=DE+DG;(3)解:设OC交HE于M,连接OE、OF,EH=HF,OE=OF,HO=HO,FHOEHO,FHO=EHO=45°,四边形GHED是矩形,EHDG,OMH=OCP=90°,HOM=90

4、6;OHM=90°45°=45°,HOM=OHM,HM=MO,OMBE,BM=ME,OM=AE,设OM=a,则HM=a,AE=2a,AE=DG,DG=3a,HGC=GCM=GHE=90°,四边形GHMC是矩形,GC=HM=a,DC=DGGC=2a,DG=HE,GC=HM,ME=CD=2a,BM=2a,在RtBOM中,tanMBO=,EHDP,P=MBO,tanP=,设OC=k,则PC=2k,在RtPOC中,OP=k=5,解得:k=,OE=OC=,在RtOME中,OM2+ME2=OE2,5a2=5,a=1,HE=3a=3,在RtHFE中,HEF=45

5、76;,EF=HE=3【点睛】考查了切线的性质,矩形的性质和判定,解直角三角形,勾股定理等知识点,能综合运用性质进行推理是解此题的关键2如图,点A、B、C分别是O上的点, CD是O的直径,P是CD延长线上的一点,AP=AC(1)若B=60°,求证:AP是O的切线;(2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE·AB的值【答案】(1)证明见解析;(2)8【解析】(1)求出ADC的度数,求出P、ACO、OAC度数,求出OAP=90°,根据切线判定推出即可;(2)求出BD长,求出DBE和ABD相似,得出比例式,代入即可求出答案试题解析:连接AD,OA,A

6、DC=B,B=60°,ADC=60°,CD是直径,DAC=90°,ACO=180°-90°-60°=30°,AP=AC,OA=OC,OAC=ACD=30°,P=ACD=30°,OAP=180°-30°-30°-30°=90°,即OAAP,OA为半径,AP是O切线(2)连接AD,BD,CD是直径,DBC=90°,CD=4,B为弧CD中点,BD=BC=,BDC=BCD=45°,DAB=DCB=45°,即BDE=DAB,DBE=DB

7、A,DBEABD,BEAB=BDBD=考点:1切线的判定;2相似三角形的判定与性质3如图,A过OBCD的三顶点O、D、C,边OB与A相切于点O,边BC与O相交于点H,射线OA交边CD于点E,交A于点F,点P在射线OA上,且PCD=2DOF,以O为原点,OP所在的直线为x轴建立平面直角坐标系,点B的坐标为(0,2)(1)若BOH=30°,求点H的坐标;(2)求证:直线PC是A的切线;(3)若OD=,求A的半径【答案】(1)(1,);(2)详见解析;(3).【解析】【分析】(1)先判断出OH=OB=2,利用三角函数求出MH,OM,即可得出结论;(2)先判断出PCD=DAE,进而判断出PC

8、D=CAE,即可得出结论;(3)先求出OE3,进而用勾股定理建立方程,r2-(3-r)2=1,即可得出结论【详解】(1)解:如图,过点H作HMy轴,垂足为M四边形OBCD是平行四边形,B=ODC四边形OHCD是圆内接四边形OHB=ODCOHB=BOH=OB=2在RtOMH中,BOH=30°,MH=OH=1,OM=MH=,点H的坐标为(1,),(2)连接ACOA=AD,DOF=ADODAE=2DOFPCD=2DOF,PCD=DAEOB与O相切于点AOBOFOBCDCDAFDAE=CAEPCD=CAEPCA=PCD+ACE=CAE+ACE=90°直线PC是A的切线;(3)解:O

9、的半径为r在RtOED中,DE=CD=OB=1,OD= ,OE3OA=AD=r,AE=3r在RtDEA中,根据勾股定理得,r2(3r)2=1解得r=【点睛】此题是圆的综合题,主要考查了平行四边形的性质,圆内接四边形的性质,勾股定理,切线的性质和判定,构造直角三角形是解本题的关键4如图1,已知扇形MON的半径为,MON=90°,点B在弧MN上移动,联结BM,作ODBM,垂足为点D,C为线段OD上一点,且OC=BM,联结BC并延长交半径OM于点A,设OA=x,COM的正切值为y.(1)如图2,当ABOM时,求证:AM=AC;(2)求y关于x的函数关系式,并写出定义域;(3)当OAC为等腰

10、三角形时,求x的值.【答案】 (1)证明见解析;(2) .();(3) .【解析】分析:(1)先判断出ABM=DOM,进而判断出OACBAM,即可得出结论;(2)先判断出BD=DM,进而得出,进而得出AE=,再判断出,即可得出结论;(3)分三种情况利用勾股定理或判断出不存在,即可得出结论详解:(1)ODBM,ABOM,ODM=BAM=90°ABM+M=DOM+M,ABM=DOMOAC=BAM,OC=BM,OACBAM, AC=AM(2)如图2,过点D作DEAB,交OM于点EOB=OM,ODBM,BD=DMDEAB,AE=EMOM=,AE=DEAB, ()(3)(i) 当OA=OC时在

11、RtODM中,解得,或(舍)(ii)当AO=AC时,则AOC=ACOACOCOB,COB=AOC,ACOAOC,此种情况不存在()当CO=CA时,则COA=CAO=CAOM,M=90°,90°,45°,BOA=290°BOA90°,此种情况不存在即:当OAC为等腰三角形时,x的值为点睛:本题是圆的综合题,主要考查了相似三角形的判定和性质,圆的有关性质,勾股定理,等腰三角形的性质,建立y关于x的函数关系式是解答本题的关键5已知AB,CD都是的直径,连接DB,过点C的切线交DB的延长线于点E如图1,求证:;如图2,过点A作交EC的延长线于点F,过点

12、D作,垂足为点G,求证:;如图3,在的条件下,当时,在外取一点H,连接CH、DH分别交于点M、N,且,点P在HD的延长线上,连接PO并延长交CM于点Q,若,求线段HM的长【答案】(1)证明见解析(2)证明见解析(3)【解析】【分析】(1)由D+E=90°,可得2D+2E=180°,只要证明AOD=2D即可;(2)如图2中,作ORAF于R只要证明AORODG即可;(3)如图3中,连接BC、OM、ON、CN,作BTCL于T,作NKCH于K,设CH交DE于W解直角三角形分别求出KM,KH即可;【详解】证明:如图1中,与CE相切于点C,证明:如图2中,作于R,四边形OCFR是矩形,

13、在和中,解:如图3中,连接BC、OM、ON、CN,作于T,作于K,设CH交DE于W设,则,为直径,负根已经舍弃,是等边三角形,在中,在中,在中,在中,【点睛】本题考查圆综合题、全等三角形的判定和性质、平行线的性质、勾股定理、等边三角形的判定和性质、锐角三角函数等知识,添加常用辅助线,构造全等三角形或直角三角形解题的关键.6在平面直角坐标系xOy中,点M的坐标为(x1,y1),点N的坐标为(x2,y2),且x1x2,y1y2,以MN为边构造菱形,若该菱形的两条对角线分别平行于x轴,y轴,则称该菱形为边的“坐标菱形”(1)已知点A(2,0),B(0,2),则以AB为边的“坐标菱形”的最小内角为 ;

14、(2)若点C(1,2),点D在直线y=5上,以CD为边的“坐标菱形”为正方形,求直线CD 表达式;(3)O的半径为,点P的坐标为(3,m)若在O上存在一点Q,使得以QP为边的“坐标菱形”为正方形,求m的取值范围【答案】(1)60°;(2)y=x+1或y=x+3;(3)1m5或5m1【解析】分析:(1)根据定义建立以AB为边的“坐标菱形”,由勾股定理求边长AB=4,可得30度角,从而得最小内角为60°; (2)先确定直线CD与直线y=5的夹角是45°,得D(4,5)或(2,5),易得直线CD的表达式为:y=x+1或y=x+3; (3)分两种情况: 先作直线y=x,再

15、作圆的两条切线,且平行于直线y=x,如图3,根据等腰直角三角形的性质分别求P'B=BD=1,PB=5,写出对应P的坐标; 先作直线y=x,再作圆的两条切线,且平行于直线y=x,如图4,同理可得结论详解:(1)点A(2,0),B(0,2),OA=2,OB=2在RtAOB中,由勾股定理得:AB=4,ABO=30° 四边形ABCD是菱形,ABC=2ABO=60° ABCD,DCB=180°60°=120°,以AB为边的“坐标菱形”的最小内角为60° 故答案为:60°; (2)如图2以CD为边的“坐标菱形”为正方形,直线CD

16、与直线y=5的夹角是45° 过点C作CEDE于E,D(4,5)或(2,5),直线CD的表达式为:y=x+1或y=x+3; (3)分两种情况: 先作直线y=x,再作圆的两条切线,且平行于直线y=x,如图3O的半径为,且OQ'D是等腰直角三角形,OD=OQ'=2,P'D=32=1 P'DB是等腰直角三角形,P'B=BD=1,P'(0,1),同理可得:OA=2,AB=3+2=5 ABP是等腰直角三角形,PB=5,P(0,5),当1m5时,以QP为边的“坐标菱形”为正方形; 先作直线y=x,再作圆的两条切线,且平行于直线y=x,如图4 O的半径

17、为,且OQ'D是等腰直角三角形,OD=OQ'=2,BD=32=1 P'DB是等腰直角三角形,P'B=BD=1,P'(0,1),同理可得:OA=2,AB=3+2=5 ABP是等腰直角三角形,PB=5,P(0,5),当5m1时,以QP为边的“坐标菱形”为正方形; 综上所述:m的取值范围是1m5或5m1点睛:本题是一次函数和圆的综合题,考查了菱形的性质、正方形的性质、点P,Q的“坐标菱形”的定义等知识,解题的关键是理解题意,学会利用图象解决问题,学会用分类讨论的思想思考问题,注意一题多解,属于中考创新题目7如图,AB是圆O的直径,射线AMAB,点D在AM上,连

18、接OD交圆O于点E,过点D作DC=DA交圆O于点C(A、C不重合),连接OC、BC、CE(1)求证:CD是O的切线;(2)若圆O的直径等于2,填空:当AD= 时,四边形OADC是正方形;当AD= 时,四边形OECB是菱形【答案】(1)见解析;(2)1;【解析】试题分析:(1)依据SSS证明OADOCD,从而得到OCD=OAD=90°;(2)依据正方形的四条边都相等可知AD=OA;依据菱形的性质得到OE=CE,则EOC为等边三角形,则CEO=60°,依据平行线的性质可知DOA=60°,利用特殊锐角三角函数可求得AD的长试题解析:解:AMAB,OAD=90°

19、OA=OC,OD=OD,AD=DC,OADOCD,OCD=OAD=90°OCCD,CD是O的切线(2)当四边形OADC是正方形,AO=AD=1故答案为:1四边形OECB是菱形,OE=CE又OC=OE,OC=OE=CECEO=60°CEAB,AOD=60°在RtOAD中,AOD=60°,AO=1,AD=故答案为:点睛:本题主要考查的是切线的性质和判定、全等三角形的性质和判定、菱形的性质、等边三角形的性质和判定,特殊锐角三角函数值的应用,熟练掌握相关知识是解题的关键8如图,ABC是O的内接三角形,点D,E在O上,连接AE,DE,CD,BE,CE,EAC+BA

20、E=180°,(1)判断BE与CE之间的数量关系,并说明理由;(2)求证:ABEDCE;(3)若EAC=60°,BC=8,求O的半径【答案】(1)BE=CE,理由见解析;(2)证明见解析;(3)【解析】分析:(1)由A、B、C、E四点共圆的性质得:BCE+BAE=180°,则BCE=EAC,所以,则弦相等;(2)根据SSS证明ABEDCE;(3)作BC和BE两弦的弦心距,证明RtGBORtHBO(HL),则OBH=30°,设OH=x,则OB=2x,根据勾股定理列方程求出x的值,可得半径的长本题解析:(1)解:BE=CE,理由:EAC+BAE=180

21、76;,BCE+BAE=180°,BCE=EAC,BE=CE;(2)证明:,AB=CD,AE=ED,由(1)得:BE=CE,在ABE和DCE中, ,ABEDCE(SSS);(3)解:如图,过O作OGBE于G,OHBC于H,BH=BC=×8=4,BG=BE,BE=CE,EBC=EAC=60°,BEC是等边三角形,BE=BC,BH=BG,OB=OB,RtGBORtHBO(HL),OBH=GBO=EBC=30°,设OH=x,则OB=2x,由勾股定理得:(2x)2=x2+42,x=,OB=2x=,O的半径为点睛:本题是圆的综合题,考查了四点共圆的性质、三角形全等

22、的性质和判定、勾股定理、直角三角形30°的性质,难度适中,第一问还可以利用三角形全等得出对应边相等的结论;第三问作辅助线,利用勾股定理列方程是关键.9对于平面直角坐标系xOy中的线段MN和点P,给出如下定义:点A是线段MN上一个动点,过点A作线段MN的垂线l,点P是垂线l上的另外一个动点如果以点P为旋转中心,将垂线l沿逆时针方向旋转60°后与线段MN有公共点,我们就称点P是线段MN的“关联点”如图,M(1,2),N(4,2)(1) 在点P1(1,3),P2(4,0),P3(3,2)中,线段MN的“关联点”有 ;(2) 如果点P在直线上,且点P是线段MN的“关联点”,求点P的

23、横坐标x的取值范围;(3) 如果点P在以O(1,)为圆心,r为半径的O上,且点P是线段MN的“关联点”,直接写出O半径r的取值范围 【答案】(1)P1和P3;(2);(3)【解析】【分析】(1)先根据题意求出点P的横坐标的范围,再求出P点的纵坐标范围即可得出结果;(2)由直线y=x+1经过点M(1,2),得出x1,设直线y=x+1与P4N交于点A,过点A作ABMN于B,延长AB交x轴于C,则在AMN中,MN=3,AMN=45°,ANM=30°,设AB=MB=a,tanANM=,即tan30°=,求出a即可得出结果;(3)圆心O到P4的距离为r的最大值,圆心O到MP

24、5的距离为r的最小值,分别求出两个距离即可得出结果【详解】(1)如图1所示:点A是线段MN上一个动点,过点A作线段MN的垂线l,点P是垂线l上的另外一个动点,M(1,2),N(4,2),点P的横坐标1x4,以点P为旋转中心,将垂线l沿逆时针方向旋转60°后与线段MN有公共点,当MPN=60°时,PM=,同理PN=,点P的纵坐标为2-或2+,即纵坐标2-y2+,线段MN的“关联点”有P1和P3;故答案为:P1和P3;(2)线段MN的“关联点”P的位置如图所示, 直线经过点M(1,2), x1.设直线与P4N交于点A .过点A作ABMN于B,延长AB交x轴于C.由题意易知,在A

25、MN中,MN = 3,AMN = 45°,ANM = 30°.设AB = MB = a, ,即,解得 点A的横坐标为 综上 (3)点P在以O(1,-1)为圆心,r为半径的O上,且点P是线段MN的“关联点”,如图3所示:连接P4O交x轴于点D,P4、M、D、O共线,则圆心O到P4的距离为r的最大值,由(1)知:MP4=NP5=,即OD+DM+MP4=1+2+=3+,圆心O到MP5的距离为r的最小值,作OEMP5于E,连接OP5,则OE为r的最小值,MP5=2,OM=OD+DM=1+2=3,OMP5的面积=OEMP5=OMMN,即×OE×2=×3&

26、#215;3,解得:OE=,r3+【点睛】本题是圆的综合题,考查了旋转、直角三角形的性质、勾股定理、最值等知识,熟练掌握“关联点”的含义,作出关于MN的“关联点”图是关键10如图,AC是O的直径,OB是O的半径,PA切O于点A,PB与AC的延长线交于点M,COBAPB(1)求证:PB是O的切线;(2)当MB4,MC2时,求O的半径【答案】(1)证明见解析;(2)3.【解析】【分析】(1)根据题意M+P90°,而COBAPB,所以有M+COB90°,即可证明PB是O的切线.(2)设圆的半径为r,则OM=r+2,BM=4,OB=r,再根据勾股定理列方程便可求出r.【详解】证明:

27、(1)AC是O的直径,PA切O于点A,PAOA在RtMAP中,M+P90°,而COBAPB,M+COB90°,OBM90°,即OBBP,PB是O的切线;(2)设O的半径为r, , , 为直角三角形 ,即 解得:r3,O的半径为3【点睛】本题主要考查圆的切线问题,证明圆的切线有两种思路一种是证明连线是半径,另一种是证明半径垂直.11如图,ABCD的边AD是ABC外接圆O的切线,切点为A,连接AO并延长交BC于点E,交O于点F,过点C作直线CP交AO的延长线于点P,且BCPACD(1)求证:PC是O的切线;(2)若B67.5°,BC2,求线段PC,PF与弧C

28、F所围成的阴影部分的面积S【答案】(1)见解析;(2)【解析】【分析】(1)  过C点作直径CM,连接MB,根据CM为直径,可得M+BCM90°,再根据ABDC可得ACDBAC,由圆周角定理可得BACM,BCPACD,从而可推导得出PCM90°,根据切线的判定即可得;(2)连接OB,由AD是O的切线,可得PAD90°,再由BCAD,可得APBC,从而得BECE BC1,继而可得到ABCACB67.5°,从而得到BAC45°,由圆周角定理可得BOC=90°,从而可得BOECOEOCE 45°,根据

29、已知条件可推导得出OECE1,PCOC,根据三角形面积以及扇形面积即可求得阴影部分的面积.【详解】(1)  过C点作直径CM,连接MB,CM为直径,MBC90°,即M+BCM90°,四边形ABCD是平行四边形,ABDC,ADBC,ACDBAC,BACM,BCPACD,MBCP,BCP+BCM90°,即PCM90°,CMPC,PC与O相切;(2)连接OB,AD是O的切线,切点为A,  OAAD,即PAD90°,BCAD,AEB=PAD90°, APBCBECE BC1, ABAC,ABC

30、ACB67.5°,BAC180°ABCACB45°,BOC2BAC90°,OBOC,APBC,BOECOEOCE 45°,PCM90°,CPOCOEOCE 45°,OECE1,PCOC, SSPOCS扇形OFC【点睛】本题考查了切线的判定与性质、圆周角定理、垂径定理、扇形面积等,综合性较强,准确添加辅助线是解题的关键.12如图,线段BC所在的直线 是以AB为直径的圆的切线,点D为圆上一点,满足BDBC,且点C、D位于直径AB的两侧,连接CD交圆于点E. 点F是BD上一点,连接EF,分别交AB、BD于点G、H,且EFBD.(1

31、)求证:EFBC;(2)若EH4,HF2,求的长.【答案】(1)见解析;(2) 【解析】【分析】(1)根据EFBD可得,进而得到,根据“在同圆或等圆中,同弧或等弧所对的圆周角相等”即可得出角相等进而可证.(2)连接DF,根据切线的性质及垂径定理求出GF、GE的长,根据“在同圆或等圆中,同弧或等弧所对的圆周角相等”及平行线求出相等的角,利用锐角三角函数求出BHG,进而求出BDE的度数,确定所对的圆心角的度数,根据DFH90°确定DE为直径,代入弧长公式即可求解.【详解】(1)EFBD, DDEF又BDBC,DC,DEF=CEFBC(2)AB是直径,BC为切线,ABBC又EFBC,ABE

32、F,弧BF=弧BE,GFGE(HF+EH)=3,HG=1DB平分EDF,又BFCD,FBDFDBBDEBFHHBHF2cosBHG,BHG60°.FDBBDE30°DFH90°,DE为直径,DE4,且弧BE所对圆心角60°.弧BE×4【点睛】本题是圆的综合题,主要考查圆周角、切线、垂径定理、弧长公式等相关知识,掌握圆周角的有关定理,切线的性质,垂径定理及弧长公式是解题关键.13在直角坐标系中,O为坐标原点,点A坐标为(2,0),以OA为边在第一象限内作等边OAB,C为x轴正半轴上的一个动点(OC2),连接BC,以BC为边在第一象限内作等边BCD

33、,直线DA交y轴于E点(1)求证:OBCABD(2)随着C点的变化,直线AE的位置变化吗?若变化,请说明理由;若不变,请求出直线AE的解析式(3)以线段BC为直径作圆,圆心为点F,当C点运动到何处时,直线EF直线BO;这时F和直线BO的位置关系如何?请给予说明【答案】(1)见解析;(2)直线AE的位置不变,AE的解析式为:;(3)C点运动到处时,直线EF直线BO;此时直线BO与F相切,理由见解析.【解析】【分析】(1)由等边三角形的性质可得到OB=AB,BC=BD,OBA=DBC,等号两边都加上ABC,得到OBC=ABD,根据“SAS”得到OBCABD.(2)先由三角形全等,得到BAD=BOC

34、=60°,由等边BCD,得到BAO=60°,根据平角定义及对顶角相等得到OAE=60°,在直角三角形OAE中,由OA的长,根据tan60°的定义求出OE的长,确定出点E的坐标,设出直线AE的方程,把点A和E的坐标代入即可确定出解析式.(3)由EAOB,EFOB,根据过直线外一点作已知直线的平行线有且只有一条,得到EF与EA重合,所以F为BC与AE的交点,又F为BC的中点,得到A为OC中点,由A的坐标即可求出C的坐标;相切理由是由F为等边三角形BC边的中点,根据“三线合一”得到DF与BC垂直,由EF与OB平行得到BF与OB垂直,得证.【详解】(1)证明:O

35、AB和BCD都为等边三角形,OB=AB,BC=BD,OBA=DBC=60°,OBA+ABC=DBC+ABC,即OBC=ABD,在OBC和ABD中, ,OBCABD.(2)随着C点的变化,直线AE的位置不变,OBCABD,BAD=BOC=60°,又BAO=60°,DAC=60°,OAE=60°,又OA=2,在RtAOE中,tan60°=,则OE=2,点E坐标为(0,-2),设直线AE解析式为y=kx+b,把E和A的坐标代入得: ,解得, ,直线AE的解析式为:.(3)C点运动到处时,直线EF直线BO;此时直线BO与F相切,理由如下:BO

36、A=DAC=60°,EAOB,又EFOB,则EF与EA所在的直线重合,点F为DE与BC的交点,又F为BC中点,A为OC中点,又AO=2,则OC=4,当C的坐标为(4,0)时,EFOB,这时直线BO与F相切,理由如下:BCD为等边三角形,F为BC中点,DFBC,又EFOB,FBOB,直线BO与F相切,【点睛】本题考查了一次函数;三角形全等的判定与性质;等边三角形的性质和直线与圆的位置关系.熟练掌握相关性质定理是解题关键.14在平面直角坐标系XOY中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),且x1x2,若P、Q为某等边三角形的两个顶点,且有一边与x轴平行(含重合),则称P

37、、Q互为“向善点”如图1为点P、Q互为“向善点”的示意图已知点A的坐标为(1,),点B的坐标为(m,0)(1)在点M(1,0)、S(2,0)、T(3,3)中,与A点互为“向善点”的是_;(2)若A、B互为“向善点”,求直线AB的解析式;(3)B的半径为,若B上有三个点与点A互为“向善点”,请直接写出m的取值范围【答案】(1)S,T(2)直线AB的解析式为yx或yx+2;(3)当2m0或2m4时,B上有三个点与点A互为“向善点”【解析】【分析】(1)根据等边三角形的性质结合“向善点”的定义,可得出点S,T与A点互为“向善点”;(2)根据等边三角形的性质结合“向善点”的定义,可得出关于m的分式方程

38、,解之经检验后可得出点B的坐标,根据点A,B的坐标,利用待定系数法即可求出直线AB的解析式;(3)分B与直线y=x相切及B与直线y=-x+2相切两种情况求出m的值,再利用数形结合即可得出结论【详解】(1),点S,T与A点互为“向善点”故答案为S,T(2)根据题意得:,解得:m10,m22,经检验,m10,m22均为所列分式方程的解,且符合题意,点B的坐标为(0,0)或(2,0)设直线AB的解析式为ykx+b(k0),将A(1,),B(0,0)或(2,0)代入ykx+b,得:或,解得:或,直线AB的解析式为yx或yx+2(3)当B与直线yx相切时,过点B作BE直线yx于点E,如图2所示BOE60

39、°,sin60°,OB2,m2或m2;当B与直线yx+2相切时,过点B作BF直线yx+2于点F,如图3所示同理,可求出m0或m4综上所述:当2m0或2m4时,B上有三个点与点A互为“向善点”【点睛】本题考查了等边三角形的性质、特殊角的三角函数值、待定系数法求一次函数解析式、解分式方程以及解直角三角形,解题的关键是:(1)根据等边三角形的性质结合“向善点”的定义,确定给定的点是否与A点互为“向善点”;(2)根据点的坐标,利用待定系数法求出一次函数解析式;(3)分B与直线y=x相切及B与直线y=-x+2相切两种情况考虑15(问题情境)如图1,点E是平行四边形ABCD的边AD上一点,连接BE、CE求证:S平行四边形ABCD(说明:S表示面积)请以“问题情境”为基础,继续下面的探究(探究应用1)如图2,以平行四边形ABCD的边AD为直径作O,O与BC边相切于点H,与BD相交于点M若AD6,BDy,AMx,试求y与x之间的函数关系式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论