北师大版八年级数学勾股定理的应用专项复习四大题型_第1页
北师大版八年级数学勾股定理的应用专项复习四大题型_第2页
北师大版八年级数学勾股定理的应用专项复习四大题型_第3页
北师大版八年级数学勾股定理的应用专项复习四大题型_第4页
北师大版八年级数学勾股定理的应用专项复习四大题型_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、勾股定理的应用 复习考点分析勾股定理的应用主要考查利用勾股定理及其逆定理解决简单的实际问题,多以选择题,填空题,综合题等形式出现,题目设计的内容也多与生产生活相联系。此外,对这部分内容的考查也经常与图形的折叠知识相结合。知识点梳理1.勾股定理:直角三角形两直角边的平方和等于 。用字母表示为 。2.勾股定理逆定理:如果三角形三边长a,b,c满足 ,那么这个三角形是 。3.勾股数:满足的三个正整数。 如:3,4,5 5,12,13 8,15,17 7,24,25 9,40,41 11,60,61 注:一组勾股数中各数的相同整数倍,可以得到一组新的勾股数。(如6,8,10;15,36,39) 另:(

2、k为大于等于3的正奇数)是一组勾股数。4.圆柱的侧面展开图是 。5.两点之间的所有连线中, 最短。6.解决实际应用类问题首先要将文字语言数学化。即将文字语言转化为图形或者数学符号。常见四大类题型总结一、三角形的边角问题(1)直角三角形中简单的求值问题直角三角形的两边长分别是3和4,则第三边长的平方为 。ABC中,若,A:B:C=2:3:x,则x= 。如图,学校内有两棵树,相距12m,一棵树高13m,另一棵树高8m,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞 。(2)判断三角形的形状若三角形的三边长a,b,c满足条件,则此三角形为 。四边形ABCD中,AB=BC=2,CD=3,DA=

3、1,且角B=90°,则DAB= ,四边形ABCD的面积为 。如图,工人师傅将门砌到一定高度时,质检人员要测一下门上的四个角是否为直角,请帮质检人员想一个检验的办法,并说明理由。(3)应用勾股定理建立方程有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达池边的水面,请问水的深度与这根芦苇的长度分别是多少?小溪边长着两棵树,恰好隔岸相望,一棵树高30尺,另外一棵树高20尺,两棵树干间的距离是50尺,每棵树顶上都停着一只鸟,忽然两只鸟同时看到两棵树间水面上游出一只鱼,它们立刻以同样的速度飞去抓鱼,结果同时到达目标

4、。请问这条鱼距离两棵树分别多少尺?二、最短路线问题(1)台阶中的最短路线问题如图是一个三级台阶,它的每一级的长、宽、高分别为5dm、3dm、1dmA和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程是多少? (2)圆柱中的最短路线问题如图,有一圆柱形油罐,其底面圆的周长24M,高为6M,一只老鼠从距底面1M的A处沿油罐爬行到对角B处吃食物,则它爬行的最短路线是多少?如图,圆柱形玻璃杯高为12cm、底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短

5、距离为_cm(3)长方体中的最短路线问题如图,一只蚂蚁从实心长方体的顶点A出发,沿长方体的表面爬到对角顶点C1处(三条棱长如图所示),请问:怎样走路线最短?三、利用勾股定理解决折叠问题(1)三角形中的折叠如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使AC恰好落在斜边AB上,且点C与点E重合,求CD的长。三角形ABC是等腰三角形AB=AC=13,BC=10,将AB向AC方向对折,再将CD折叠到CA边上,折痕CE,求三角形ACE的面积。(2)长方形中的折叠如图,将长方形纸片ABCD的一边AD向下折叠,点D落在BC边上的F处,已知AB等于8厘米,BC等于10厘米,求EC的长?如图,在矩形ABCD中,AB=6,BC=8。将矩形ABCD沿CE折叠后,使点D恰好落在对角线AC上的点F处。求(1)求EF的长;(2)求梯形ABCE的面积。四、巧用勾股定理求面积分别以直角三角形ABC的三边为边向外作三个正方形,三个半圆,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系?如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为2,5,1,2则最大的正方形E的面积是多少?如图,直线l上有三个正方形a,b,c,若a,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论