版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、05级2学分A一、回答下列问题(每题5分,共30分)1 十九世纪末期人们发现了哪些不能被经典物理学所解释的新的物理现象? 2 什么是束缚态?什么是定态?3 试述电子具有自旋的实验证据。4 写出量子力学五个基本假设中的任意三个。5 表示力学量的厄米算符有哪些特性?6一维空间两粒子体系的归一化波函数为,写出下列概率: 发现粒子1的位置介于和之间(不对粒子2进行观测)二、本题满分10分设单粒子定态波函数为 ,试利用薛定谔方程确定其势场。三、本题满分12分 利用厄米多项式的递推关系和求导公式:,证明:一维谐振子波函数满足下列关系:已知一维谐振子的波函数为:四、本题满分12分一粒子在一维无限深势阱 中运
2、动,求粒子的能级和相应的归一化波函数。五、本题满分12分已知氢原子的电子波函数为。求在态中测量氢原子能量、的可能值和这些力学量的平均值。六、本题满分14分一维运动的粒子处于状态 之中, 其中, A为待求的归一化常数, 求:(1) 归一化常数;(2) 粒子坐标的平均值和粒子坐标平方的平均值;(3) 粒子动量的平均值和粒子动量平方的平均值。七、本题满分10分附:氢原子能量本征值: 定积分:,n为正整数球坐标系中:05级2学分B一、回答下列问题(每题5分,共30分)1 考虑自旋时,描述氢原子需要哪几个量子数? 2 (1)德布罗意关系式是仅适用于基本粒子如电子、中子,还是同样适用于具有内部结构的复合体
3、系?(2)粒子的德布罗意波长是否可以比其本身线度更大?二者之间是否有必然联系?3量子力学中角动量是如何定义的?地球自转是否与量子力学中的自旋概念相对应?4具有完备的共同本征函数系的两个力学量算符有什么特征?球谐函数是哪两个算符的共同本征函数?5具有分立本征值谱的力学量在其自身表象中如何表示?其本征矢量如何表示?6 什么是费米子?对费米子体系的波函数有什么要求?二、本题满分14分设氢原子处于状态,求氢原子能量、角动量平方及角动量Z分量的可能值,这些可能值出现的概率和这些力学量的平均值。三、本题满分15分证明:是一维线性谐振子的波函数,并求此波函数对应的能量。已知。四、本题满分8分证明在的本征态下
4、,。五、本题满分15分设粒子限制在矩形匣子中运动,即,求粒子的能量本征值和本征波函数。六、本题满分10分求下列算符对易关系式: 1) 2) 七、本题满分8分定义Pauli算符与自旋角动量算符的关系为,证明: 附:氢原子能量本征值:06级2学分A一、填空(每空3分,共45分)1 一维线性谐振子的能量本征值为 。2 动量的三个分量的共同本征函数为 。3自旋角动量算符在空间任意方向上的投影只能取值为 ; = 。4 。5 德布罗意关系为 。6
5、波函数的标准条件为 。7 写出量子力学五个基本假设中任意两个_。8 费米子和玻色子所组成的全同粒子体系的波函数分别具有_性和_性。9不考虑电子的自旋时,氢原子能级的简并度为 。10 电子具有自旋的实验证据包括 。11 坐标和动量的对易关系为 _ _。12 测不准关系_。13 一维空间两粒子体系的归一化波函数为,x1和x2分别表示两粒子的空间位置,那么,发现粒子1的位置介于和之间(不对粒子2进行观测)的概率 。二 本题满分7分已知角动量的对易关系为。证明:若一个算符与角动量算符的两个分量和对易,即
6、满足和,则算符必与的第三个分量对易,满足。三 本题满分8分厄密算符的本征方程为,试根据厄密算符的定义式,证明厄密算符的本征值是实数。四 本题满分9分设体系处于状态(已归一化),求:(1)的测量可能值及平均值;(2)的测量可能值及相应的概率。五 本题满分9分 氢原子处在基态,求在此态中:(1) r的平均值;(2) 势能的平均值;(3) 动量的概率分布函数。 已知定积分 。六 本题满分6分一个转动惯量为I的刚性转子绕空间某一固定点转动,叫空间转子,其能量的经典表示式为,L为角动量。求与此对应的量子体系的定态能量及波函数。已知角动量平方算符。七 本题满分8分在自旋态中,求和的不确定关系:已知算符的不
7、确定度为,平均值。八 本题满分8分算符方程称为算符的本征方程,其中常数称为算符的本征值,函数称为算符的本征函数。试确定下列函数哪些是算符的本征函数,若是本征函数,其对应的本征值是什么? , , ,06级2学分B一、回答下列问题(每小题4分,共24分)1 十九世纪末期人们发现了哪些不能被经典物理学所解释的新的物理现象? 2 试述电子具有自旋的实验证据。3 考虑自旋时,描述氢原子需要哪几个量子数?4 写出量子力学五个基本假设中的任意三个。5 表示力学量的厄米算符有哪些特性?6 什么是费米子?对费米子体系的波函数有什么要求?二、计算题(本题满分12分)氦原子的动能是,k是玻耳兹曼常数,求时,氦原子的
8、德布罗意波长。已知普朗克常数,玻耳兹曼常数,质子质量,氦原子的质量近似取为质子质量的四倍。三、计算题(本题满分12分)一粒子在一维无限深势阱 中运动,求粒子的能级和相应的归一化波函数。四、计算题(本题满分12分)设氢原子处于状态求氢原子能量、角动量平方及角动量Z分量的可能值,这些可能值出现的概率和这些力学量的平均值。已知氢原子的能量本征值为五、证明题(本题满分14分) 利用厄米多项式的递推关系和求导公式:,证明:一维谐振子波函数满足下列关系:已知一维谐振子的波函数为:六、证明题(本题满分12分)定义Pauli算符与自旋角动量算符的关系为,证明: 七、证明题(本题满分14分)证明:是一维线性谐振
9、子的能量本征波函数,并求此波函数对应的本征能量。已知一维线性谐振子的哈密顿算符为,参数。07级2学分A一、问答题(每空5分,共30分)1十九世纪末期人们发现了哪些不能被经典物理学所解释的新的物理现象。2写出量子力学五个基本假设中任意三个。3表示力学量的厄米算符有哪些特性? 4考虑自旋时,描述氢原子需要几个量子数?5什么是玻色子?对玻色子的波函数有什么要求?6具有共同本征函数的两个力学量算符有什么特征?球谐函数是哪两个算符的共同本征函数? 二 本题满分10分一粒子在一维无限深势阱 中运动,求粒子的能级和相应的归一化波函数。三 本题满分7分设单粒子定态波函数为 ,试利用薛定谔方程确定其势场。四 本
10、题满分10分算符方程称为算符的本征方程,其中常数称为算符的本征值,函数称为算符的本征函数。试确定下列函数哪些是算符的本征函数,若是本征函数,其对应的本征值是什么? , , ,五 本题满分10分氢原子处在基态,求在此态中:(1) r的平均值;(2) 势能的平均值;(3) 动量的概率分布函数。 已知定积分 。六 本题满分8分已知在和 的共同表象中,算符的矩阵为 ,求它的本征值和归一化本征函数。七 本题满分15分已知氢原子的电子波函数为。求在态中测量氢原子能量、的可能值和这些力学量的平均值。八 本题满分10分在自旋态中,求和的不确定关系:已知算符的不确定度为,平均值。07级2学分B一、问答题(每空5
11、分,共30分)1 那些实验现象揭示了光的波粒二象性?2 写出角动量算符、哈密顿算符、自旋算符的本征值。3什么是束缚态?什么是定态? 4具有分立本征值谱的力学量在其自身表象中如何表示?其本征矢量如何表示?5试述电子具有自旋的实验证据。6什么是费米子?费米子所组成的全同粒子体系的波函数有什么要求?二 本题满分10分一维运动的粒子处于状态 之中, 其中, A为待求的归一化常数, 求:(1) 归一化常数;(2) 粒子坐标的平均值和粒子坐标平方的平均值;(3) 粒子动量的平均值和粒子动量平方的平均值。三 本题满分7分厄密算符的本征方程为,试根据厄密算符的定义式,证明厄密算符的本征值是实数。四 本题满分1
12、0分 氢原子处在基态,求在此态中:(1) r的平均值;(2) 势能的平均值;(3) 动量的概率分布函数。 已知定积分 。五 本题满分15分设氢原子处于求:(1)的测量可能值、相应的概率及平均值;(2)的测量可能值、相应的概率及平均值;(3)的测量可能值、相应的概率及平均值。附:氢原子能量本征值:六 本题满分8分定义Pauli算符与自旋角动量算符的关系为,证明: 七 本题满分10分求及的本征值和所属的本征函数。八 本题满分10分在自旋态中,求和的不确定关系:已知算符的不确定度为,平均值。05级2学分A答案一、回答下列问题(每题5分,共30分)1 黑体辐射,光电效应,迈克尔逊-莫雷实验,原子的光谱
13、线系,固体的低温比热等2 当粒子被势场约束于特定的空间区域内,即在无穷远处波函数等于零的态叫束缚态。 定态是概率密度和概率流密度不随时间变化的状态。若势场恒定,则体系处于定态。3 电子具有自旋的实验证据: 1) 斯特恩-盖拉赫实验 2) 光谱精细结构 3) 反常塞曼效应4 五个基本假定: 1)微观体系的状态被一个波函数完全描述。 2)力学量用算符表示。 3)将体系的状态波函数用力学量算符的本征函数展开,则在该态上测量该力学量的结果是力学量算符的一个本征值,测量概率是相应本征函数前展开系数的模方。 4)体系的状态波函数满足薛定谔方程。 5)在全同粒子组成的体系中,两全同粒子相互调换不改变体系的状
14、态。5 厄米算符具有如下特性: 1)厄米算符的本征值为实数 2)厄米算符在任何态中的平均值均为实数 3)厄米算符属于不同本征值的本征函数彼此正交 4)描写力学量的厄米算符的本征函数是完全系6 概率二、本题满分10分将已知波函数代入球坐标系的波动方程可得所以故不妨令其为零,则所给波函数乃是自由粒子波函数三、本题满分12分 已知所以利用 四、本题满分15分解:无关,是定态问题。其定态SE方程 在各区域的具体形式为 : : :由于(1)、(3)方程中,由于,要等式成立,必须 即粒子不能运动到势阱以外的地方去。 方程(2)可变为令,得 其解为 根据波函数的标准条件确定系数A,B,由连续性条件,得 由归
15、一化条件 得 由 可见E是量子化的。对应于的归一化的定态波函数为 五、本题满分10分解:的可能值 的可能值, 的可能值 的可能值 的可能值 六、本题满分15分解:1)由归一化条件 ,有 2)坐标的平均值为:坐标平方的平均值为:3)动量平均值为:动量平方的平均值为:七、本题满分8分解:不是 是,1。 是,1。 是,1。 是,1。05级2学分答案B一、回答下列问题(每题5分,共30分)1 主量子数n,角动量量子数l,磁量子数m,自旋磁量子数ms2 德布罗意关系式是适用于一切物质的普遍关系,是波粒二象性的反映而与物质具体结构无关,因此,不仅适用于基本粒子也适用于具有内部结构的复合体系。由基本假设,波
16、长仅取决于粒子的动量大小而与粒子本身线度无必然联系。3 量子力学中角动量按下式定义:任何满足此式的算符所代表的力学量,都可以认为是角动量,此定义较之角动量的仿经典定义更具普遍性,后者只适用于轨道角动量而不能适用于自旋。 自旋是量子力学中的特有概念,无经典对应,是微观粒子的内禀属性。地球自转实际上仍然是地球各质点的轨道运动,应与轨道角动量相对应,而不是与自旋相对应。4具有完备的共同本征函数系的两个力学量算符对易。球谐函数是L2和Lz的共同本征函数5 在其自身表象中表示为对角矩阵:,为诸本征值本征矢量为单元素的一列矩阵:,6 自旋为的半奇数倍的微观粒子,要求费米子的波函数是交换反对称的。二、本题满
17、分14分设氢原子处于状态,求氢原子能量、角动量平方及角动量Z分量的可能值,这些可能值出现的概率和这些力学量的平均值。解:,可能值,几率1;,可能值 2,几率1;,可能值-,几率;可能值0,几率三、本题满分15分试证明是线性谐振子的波函数,并求此波函数对应的能量。 证:一维线性谐振子的薛定鄂方程为 把代入上式,有 把代入式左边,得 当时,左边 = 右边。 n = 3 ,是线性谐振子的波函数,其对应的能量为。四、本题满分8分证明在的本征态下,。证明:由于;所以五、本题满分15分设粒子限制在矩形匣子中运动,即,求粒子的能量本征值和本征波函数。解:匣内 (3分)采用直角坐标系,方程的解可以分离变量,
18、边界条件本征函数 (4分),可得, (4分) (2分)归一化能量本征函数为 六、本题满分10分求下列算符对易关系式: 1) 2) 解: 5分 5分七、本题满分8分证明证明: (1) (2)(1)+(2)得: (3) (3)右乘:06级2学分考试答案及评分标准A一、本题共13小题,15空,每空3分,满分45分1. (共3分)要点:注:该题为基本题,考核对量子力学中谐振子能量量子化问题的掌握情况。2. (共3分) 要点: (或)注:该题为综合题,考核的知识点包括动量本征函数、平面波波函数和力学量的共同本征函数等,要求学生综合考虑这些知识点后作答。3. (共6分) 要点:注:该题为基本题,考核对自旋
19、角动量的理解和掌握情况。4. (共3分) 要点:注:该题为基本题,考核的知识点是量子力学中非常重要的概念-球谐函数的正交性问题。5. (共3分) 要点:注:该题为基本题,考核对量子力学中最重要的基本概念-德布罗意波的理解和掌握程度。6. (共3分) 要点:连续性、有限性、单值性注:该题为基本题,考核对量子力学中波函数的理解和掌握情况。7. (共3分) 要点:(1)波函数的统计解释。 (2)力学量用厄密算符表示。 (3) (4) 薛定谔方程 (5)全同性原理注:该题为基本题,考核量子力学理论框架的基本假定,考生答出其中的任意二项即可。8. (共6分) 要点:反对称 对称注:该题为基本题,考核对量
20、子力学中全同粒子体系特性的理解情况。9. (共3分) 要点:注:该题为基本题,考核氢原子能级和简并度等问题。10.(共3分) 要点: 1) 斯特恩-盖拉赫实验 2) 光谱精细结构 3) 反常塞曼效应注:该题为基本题,考核对自旋假设的实验依据的掌握情况。11. (共3分) 要点: 注:该题为基本题,考核知识点是量子力学中重要的一个基本对易关系。12. (共3分) 要点:注:该题为基本题,考核量子力学中的不确定关系。13. (共3分) 要点:概率注:该题为基本题,考核概率和概率密度等知识点。二、本题满分7分证明:设算符与角动量算符及皆对易,即 2分则 3分同理可知,若算符与角动量算符及皆对易,则算
21、符必与对易;若算符与角动量算符及皆对易,则算符必与对易,于是,问题得证。 2分注:该题为基本题,考核学生对算符运算规则和角动量算符性质的掌握情况。三、本题满分8分证明:厄密算符的本征值方程为: 2分由厄密算符的性质,若取, 3分 3分注:该题为基本题,考核学生对一维谐振子波函数的理解和应用能力。四、本题满分9分解: 由于 , 2分, 2分所以(1)的可能值为;相应的概率为;平均值为 3分 (2)的可能值为;相应的概率为。 2分注:该题为综合题,考核轨道角动量算符的本征值问题以及力学量的测量值及分布概率等问题。五、本题满分9分解:(1) 3分 3分(3) 动量几率分布函数 3分注:该题为综合题,
22、考核氢原子的波函数的意义以及力学量的测值概率和平均值等知识点。六、本题满分6分解: 而 则 2分为使在变化的整个区域内都是有限的,必须有 () () 2分 () 2分注:该题为基本题,考核角动量平方算符的本征值问题。七、本题满分8分解:由,同理, 2分 2分 2分 2分注:该题为综合题,考核的知识点包括:波函数归一化,力学量平均值的计算以及力学量算符等。八、本题满分8分解: 不是的本征函数。 1分 是的本征函数,其对应的本征值为1。 1分 可见,是的本征函数,其对应的本征值为1。 2分 是的本征函数,其对应的本征值为1。 2分 是的本征函数,其对应的本征值为1。 2分 注:该题为基本题,考核算
23、符的本征函数和本征值的概念06级2学分考试答案及评分标准B一、本题共6小题,每小题4分,满分24分1. (共4分)要点:黑体辐射,光电效应,迈克尔逊-莫雷实验,原子的光谱线系,固体的低温比热等。 注:该题为基本题,考核对量子力学发展过程的了解情况。要求考生至少答出其中三项。 2. (共4分)要点: 电子具有自旋的实验证据: 1) 斯特恩-盖拉赫实验 2) 光谱精细结构 3) 反常塞曼效应注:该题为基本题,考核对自旋假设的实验依据的掌握情况。3. (共4分)要点:主量子数n,角动量量子数l,磁量子数m,自旋磁量子数ms 注:该题为基本题,考核描述氢原子所需的量子数这一知识点。4. (共4分)要点:五个基本假定: 1)微观体系的状态被一个波函数完全描述。 2)力学量用算符表示。 3)将体系的状态波函数用力学量算符的本征函数展开,则在该态上测量该力学量的结果是力学量算符的一个本征值,测量概率是相应本征函数前展开系数的模方。 4)体系的状态波函数满足薛定谔方程。 5)在全同粒子组成的体系中,两全同粒子相互调换不改变体系的状态。注:该题为基本题,考核量子力学理论框架的基本假定,考生答出其中的任意三项即可。5. (共4分)要点:厄米算符具有如下特性: 1)厄米算符的本征值为实数。 1分 2)厄米算符在任何态中的平均值均为实数。 1分 3)厄米算符属于不同本征值的本征函数彼此正
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度农田水利EPC施工合同
- 2024年度体育赛事赞助与媒体转播合同
- 金色鱼钩课件教学课件
- 2024年度定制家具制作与销售合同
- 2024年国际货物买卖与运输服务合同
- 2024年度版权衍生品开发合同
- 2024年度商用门安装合同样本
- 2024年度设备租赁服务合同
- 2024江苏省建设工程造价咨询全过程合同模板
- 2024年度学校实验室灯具更换劳务外包合同
- 第15课 两次鸦片战争 教学设计 高中历史统编版(2019)必修中外历史纲要上册+
- 银行客户经理招聘面试题与参考回答(某大型集团公司)
- 2024-2025学年度第一学期七年级语文课内阅读练习含答案
- 福建省2025届普通高中学业水平合格考试仿真模拟政治试题(一)
- 幼儿园三年发展规划(2024年-2026年)
- 2024-2030年中国重症监护监护系统行业市场发展趋势与前景展望战略分析报告
- 2024年艾滋病知识题库
- 2024年安徽龙亢控股集团限公司公开招聘人员13人(高频重点提升专题训练)共500题附带答案详解
- 湖南美术出版社六年级上册《书法练习指导》表格教案
- 投标项目进度计划
- 中医脑病科缺血性中风(脑梗死恢复期)中医诊疗方案临床疗效分析总结
评论
0/150
提交评论