初一上初中数学应用题100题练习与答案_第1页
初一上初中数学应用题100题练习与答案_第2页
初一上初中数学应用题100题练习与答案_第3页
初一上初中数学应用题100题练习与答案_第4页
初一上初中数学应用题100题练习与答案_第5页
已阅读5页,还剩36页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、列方程解应用题百题-学生练习一、多位数的表示1、有一个三位数,百位上的数字是1,假设把1放在最后一位上,而另两个数字的顺序不变,那么所得的新数比原数大234,求原三位数。解:(多位数表示) 设后两位数即十位与个数为x,100234=1012、一个三位数,百位上的数字比十位上的数字大1,个位上的数字比十位上的数字的3倍少2.假设将三个数字顺序倒过来,所得的三位数与原三位数的与是1171,求这个三位数。解:(多位数表示)设十位数字为x,那么百位数字为1,个位数字为32100(1)+1032+100(32)+10(1)11713、有大小两个两位数,在大数的右边写上一个0后写上小的数,得到一个五位数,

2、又在小数的右边写上大数,然后再写上一个零,也得到一个五位数,第一个五位数除第二个五位数得到的商为2,余数为599,此外,大数的2倍与小数3倍的与为72,求这两个两位数。解:多位数表示设大的两位数为x,小的两位数为y大小, 小大4、有一个三位数,各数位上的数字的与是15,个位数字与百位数字的差是5,如果颠倒各数位的数字顺序,那么所用到的新数比原数的3倍少39,求这个三位数。解:多位数表示百 十 个5 10-2x x原数=100(5)+10(10-2x), 新数=10010(10-2x)53100(5)+10(10-2x)-39=10010(10-2x)55、两个三位数,它们的与加1得1000,如

3、果把较大的数放在小数的左边,点一个小数点在两数之间所成的数,正好等于把小数放在大数的左边,中间点一个小数点所成的数的6倍,求两个三位数。解:多位数表示+与设大三位数,小三位数为999- x.6、一个两位数,个位上的数字比十位上的数字大5,且个位上的数字与十位上的数字的与比这个两位数的大6,求这个两位数。解:(多位数的表示+差) 设十位数为X,那么个位数为5,依题意得1055-9二、与1、某车间有工人85人,平均每人每天可以加工大齿轮8个或小齿轮10个,又知1个大齿轮与三个小齿轮配为一套,问应如何安排劳力使生产的产品刚好成套?解:与设应安排X人加工大齿轮,那么安排85人加工小齿轮2、为了把202

4、1年北京奥运会举办成一届绿色奥运会,实验中学与潞河中学的同学积极参加绿化工程的劳动。两校共绿化了4415平方米的土地,潞河中学绿化的面积比实验中学绿化面积的2倍少13平方米,这两所中学分别绿化了多少面积?解:与设实验中学x人,潞河中学4415, 3、用白铁皮做罐头盒,每张铁皮可制造盒身18个,或制造盒底45个,一个盒身与两个盒底配成一套罐头盒。现有180张白铁皮,用多少张制造盒身,多少张制造盒底,可以制成整套罐头盒?解:与设x张铁皮作盒身,180张铁皮作盒底184、为了保护生态环境,我省某山区县响应国家“退耕还林号召,将该县某地一局部耕地改为林地,改变后,林地面积与耕地面积共有180平方千米,

5、耕地面积是林地面积的25%,求改变后林地面积与耕地各为多少平方千米?解:与设林地面积为x,耕地面积为180, 180255、王大伯承包了25亩土地,今年春季改种茄子与西红柿两种大棚蔬菜,用去了44000元,其中种茄子每亩用去了1700元,获纯利2600元;种西红柿每亩用去了1800元,获纯利2600元,问王大伯一共获纯利多少元?解:与设种茄子x亩,种西红柿251700180025=44000, 那么获利为2600260025,6、某蔬菜公司收购到某种蔬菜140吨,准备加工后上市销售,该公司的加工能力是:每天精加工6吨或者粗加工16吨,现方案用15天完成加工任务,该公司应安排几天粗加工,几天精加

6、工,才能按期完成任务?如果每吨蔬菜粗加工后的利润为1000元,精加工后为2000元,那么该公司出售这些加工后的蔬菜共可获利多少元?解:与设x天安排作粗加工,15天安排作细加工615+16140, 获利为1000+2000157、某个体户向银行申请了甲、乙两种贷款,共计136万元,每一年需付利息1684万元,甲种贷款的年利率是,乙种贷款的年利率是,问这两种贷款的数额各是多少?解:与设甲种贷款x万元,乙种贷款1368、甲、乙两种商品的原单价与为100元,因市场变化,甲商品降价10%,乙商品提价5%,调价后,甲、乙两种商品的单价与比原单价与提高了2%,求甲、乙两种商品的原单价各是多少元?解:与设甲种

7、商品原单价x万,乙商品原单价100 (1-10%)x +1+5%100=1001+2%15、某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完两商店销售这两种产品每件的利润元如表:A型利润B型利润A型40件B型60件 甲店200170甲店(70件)x乙店160150乙店(30件)A型40件B型60件甲店(70件)x乙店(30件)1设分配给甲店A型产品x件,把表二填写完整2假设两商店销售这两种产品的总利润为17560元,那么分配给甲店A型产品多少件?解:与A型利润B型利润A型40件B型60件 甲店200170甲店(70件)x70乙店1

8、60150乙店(30件)4010A型40件B型60件甲店(70件)x乙店(30件) 200170(70)+160(40)+150(10)=175609、“五一期间,某商场搞优惠促销,决定由顾客抽奖确定折扣,某顾客购置甲、乙两种商品,分别抽到七折按售价的70%销售与九折按售价的90%销售,共付款386元,这两种商品原售价之与为500元,问这两种商品的原销售价分别为多少元?解:与设甲原售价x元,乙原售价500, 0.70.9500=38610、某市场购进甲、乙两种商品共件,甲种商品进价每件元,利润率是,乙种商品进价每件元,利润率是,共获利元,问甲、乙两种商品各购进了多少件?解:与设甲购进了x件,乙

9、购进了50件35x·2021×50·1527811、某企业用于甲、乙两个不同工程的投资20万元,甲工程的年收益率5.4%,乙工程的年收益率为8.28%,该企业一年可获得收益12240元,问该企业对两个工程的投资各是多少万元?解:与甲工程x万元,乙工程20万元5.40%·8,28%·12、去年甲、乙两车间方案完成利税150万元,由于进展了技术革新,生产效率大幅度提高,结果甲车间超额完成税利110%,乙车间超额完成税利120%,两车间一共上缴税利323万元,问甲、乙车间实际上缴税利多少万元?解:与设甲方案完成利税x万元,那么乙方案完成利税1501+

10、110%1+120%15013、 中与小学有100名学生参加外语竞赛 ,平均得64分,其中男生平均分是60分,女生平均分是70分。男生比女生多多少人?解:与+平均数设男x人,女生100, 100×64=60 70100- x14、给货主运2100箱玻璃,完好运到一箱给运费5元,损坏一箱不但不给运费,还要赔给货主40元。将这些玻璃运到后收到货款9690元,损坏了几箱玻璃?解:与设损坏了x箱,未损坏2100箱, 52100-409690三、差1、设A,B两地相距82千米(),甲骑自行车由A向B驶去,9分钟()后,乙骑自行车由B出发以每小时比甲快2千米的速度向A驶去,两人在距B地40千米处

11、相遇,问甲乙的速度各是多少?解:差设甲的速度为X,乙的速度为22、甲班有45人,乙班有39人,现在需要从甲、乙两班各抽调一些同学去参加歌咏比赛。如果甲班抽调的人数比乙班多1人,那么甲班剩余的人数恰好是乙班剩余人数的2倍,问从甲、乙两班各抽调了多少人参加歌咏比赛?解:差设乙抽调x,那么甲抽调1人3、一骑自行车的人,起初用每小时18千米的速度在一段路上骑自行车,在剩下的路程比已经走过的路程少32千米的地点开场,他用每小时25千米的速度骑完全程,假设骑完全程的平均速度是20千米每小时,问他共行了多少千米?解:差设剩下路程x,已走过32,全程2324、甲对乙说:“我像你这样大岁数的那年,你的罗数等于我

12、今年岁数的一半,当你到我这样大岁数的时候,我的岁数是你今年岁数的二倍少7岁。两人现年各多少岁?答:甲现年岁,乙现年。解: 年龄问题,注意差不变 甲 乙以前 Y 现在 X Y将来 27 X四、倍数1、甲、乙、丙三人的年龄都是正整数,甲的年龄是乙的两倍,乙比丙小7岁,三人的年龄之与是小于70的质数,且质数的各位数字之与为13,那么甲、乙、丙三人的年龄分别是?解:倍数,质数设乙年龄x,甲年龄2x,丙72、书架上层放的书是下层放的3倍。如果把上层搬40本到下层,那么两层书架上的书相等,原来上、下两各多少本?解:倍数设原来下层x本,上层3x件,340403、甲、乙、丙三数的与是700,又知甲数是乙数的2

13、倍,丙数是乙数的一半,甲、乙、丙三数各是多少?解:倍数设乙,甲=2x,丙=, 27004、今年母亲的年龄是儿子的4倍,20年后母亲的年龄是儿子的2倍,母亲与儿子今年各多少岁?解:倍数设今年儿子x岁,母亲4x, 220=4205、现在父母年龄与是子女年龄与的6倍,2年前,父母年龄与是子女年龄与的10倍,6年后,父母年龄与是子女年龄与的3倍,问共有子女几人?解:倍数设今年子女年龄与为x,父母今年年龄与为6x,共有y个子女6、小红、小明、小虎、小亮共收集邮票320枚,其中小红的邮票枚数是小亮的3倍,小虎的邮票枚数是小红与小亮总数的2倍,小明的邮票比小虎多120枚,问他们各有多少枚邮票?解:倍数设小亮

14、邮票x张,小红3x张,小虎=23x=8x小明=8120, 388120=3207、A的年龄比B与C的年龄与大16,A的年龄的平方比B与C的年龄与的平方大1632,那么A、B、C的年龄之与是 A. 210B. 201C. 102D. 120解:技巧:可设B与C的年龄与为M, 1622=1632 ()()=1632, 102五、经济类问题、利润问题1、为民房产公司把一套房子以标价的九五折出售给钱先生,钱先生在三年后再以超出房子原来标价60%的价格把房子转让给金先生,考虑到三年来物价的总涨幅为40%,那么钱先生实际上按%的利率获得了利润准确到一位小数解:利润问题标价 售价 利润1 0.95 1

15、15;×(1+40%) 利润率2、某商店出售某种商品每件可获利m元,利润为20%利润,假设这种商品的进价提高25%,而商店将这种商品的售价提高到每件仍可获利m元,那么提价后的利润率为 A. 25%B. 20%C. 16%D. 12.5%解:利润问题 进价 售价 利润, 利润率=3、某商场按定价销售某种电器时,每台可获利48元 ,按定价的九折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等。求该电器每台的进价、定价各是多少元?解:利润问题 进价 定价 售价 利润 原 x 48 48 480.948×6-6948-30-9x4、一商店将每台彩电先按进价提高40%标

16、出销售价,然后广告宣传将以80%的优惠出售,结果每台赚了300元,那么经销这种彩电的利润率是多少?解:利润问题进价 定价 售价x x(1+40%) x(1+40%)×80%100(1+40%)×80%5、甲、乙两件服装的本钱共500元,商店老板为获取利润,决定将甲服装按50的利润定价,乙服装按40的利润定价。在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的本钱各是多少元?解:与+利润设甲服装本钱x元,乙服装本钱500。 本钱 定价 售价 利润甲 x (1+50%)x (1+50%)x·0.9 (1+50%)x·0

17、.9- x乙500 (1+40%)(500) (1+40%)(500)·0.9 (1+40%)(500)·0.9-(500- x)1+50%x·0.9+(1+40%)(500) ·0.9=500+1576、某商品的进价为1600元,原售价为2200元因库存积压需降价出售,假设每件商品仍想获得10%的利润需几折出售?解:经济类问题设X折出售,7、有一批货物,如果本月1日售出,可获利1000元,然后将本利全部存入银行,当时的月利率为2%,如果下月1日售出,可获利1200元,要付50元的保管费,这批货物是本月1日还是下月1日售出为宜?解:经济类问题假设本月1日

18、售出:获利10001+2%假设下月1日售出:1200-5, 比拟大小即可8、某种产品按质量分为10个档次,生产最低档次产品,每件获利润8元,每提高一个档次,每件产品利润增加2元,用同样工时,最低档次产品每天可生产60件,提高一个档次将减少3件,如果获利润最大的产品是第R档次最低档次为第一档次,档次依次随质量增加,那么R等于 A. 5B. 7C. 9D. 10解:函数极值利润=8+21×60-3(1)初一学生可将2,3,4,10代入,初二学生可配方求解。9、某人现有1000元现金,存入银行5年后取出,现在银行定期存款利率为1年期2.25%,2年期2.43%,3年期2.7%,5年期2.8

19、8%,到期利息要交纳20%的利息税,如果按以下4种方案存入银行,5年后交纳利息税后一共可以取出多少钱?先存1年定期,到期后将本金与扣除利息税后的利息转存一年,连续4次。先存2年定期,到期后将本金与扣除利息税后的利息转存三年定期。先存3年定期,到期后将本金与扣除利息税后的利息转存一年,连续2次.存5年定期。解:利息计算不计利息税 1000×1+2.25%4 1000×1+2×2.43%×1+32.7% 1000×1+3×2.7%×1+2.25%2 1000×1+5×2.88%10、植树节这一天,某校学生去植

20、树,如果每人植树6株,只能完成原方案植树数的,如果每人提高植树效益的50%,那么可比原方案多植树植树40株,求参加植树的人数及原方案植树的株数。解:盈亏问题设人数x人,任务y棵树11、蛛蛛有8条腿,蜻蜓有6条腿与2对翅膀,蝉有6条腿与1对翅膀,现有小虫18只,共有118条腿与20对翅膀,问每种小虫各多少只?解:盈亏问题设蛛蛛x 蜻蜓y 蝉z六、浓度问题1、有含盐40的盐水600克,现在要制成含盐25的盐水,试问需要加水各多少千克?解:浓度问题设需加水x千克,等式构成可考虑利用盐=盐建立600×40600×25%2、要在含50酒精的800克(g)酒中,倒入含酒精85的酒多少克

21、,才能配成含酒精75的酒?解:浓度问题设倒入x克85%的酒精, 3、甲种盐水含盐40,乙种盐水含盐15,现在要制成5千克()含盐25的盐水,试问需要甲乙两种盐水各多少千克?解:浓度问题+与设甲盐水需X千克,那么乙盐水需5千克40%×(5)×155×25%4、从两个重量分别为12千克()与8千克,且含铜的百分数不同的合金上切下重量相等的两块,把所切下的每块与另一块剩余的合金放在一起,熔炼后两个合金含铜的百分数相等求所切下的合金的重量是多少千克?分析:由于条件中涉及到合金中含铜的百分数,因此只有增设这两个合金含铜的百分数为参数或与合金含铜的百分数有关的其他量为参数,才

22、能充分利用,为列方程创造条件解:浓度问题设所切下的合金的重量为x千克,重12千克的合金的含铜百分数为p,重8千克的合金的含铜百分数为q(pq),于是有整理得 5()24()因为pq,所以0,因此,即所切下的合金重千克七、比与比例1、甲、乙、丙三个人每天生产机器零件数为甲、乙之比为4:3;乙、丙之比为6:5,又知甲与丙的与比乙的2倍多12件,求每个人每天生产多少件?解:(合成比例) ,设,那么2、某裁缝做一件童装、一条裤子、一件上衣,所用时间之比为1:2:3,他一天共能做2件童装、3条裤子、4件上衣,那么他做2件上衣、10条裤子、14件童装需几天?解:(连等连比设为K) 一件童装时间x,一条裤子

23、2x,一件上衣3x 26 12 “1, 6 20 14 40 2天3、财产保险是常见的保险,某年8月的一天,村民王小二的三间草房及所有家具被雷电击中起火,化为一片灰烬,由于他曾向镇保险所投保4元人民币,10月,他从镇保险所领到995元的赔偿,倘假设他按规定投足保险金,那么可获得2985元的赔款,问王小二应投足多少保险金?解:(比与比例)投保 赔偿4 995X 29854、三种混合物由三种A、B与C按一定比例组成,第一种仅含有成分A与B,重量比为3:5,第二种只含成分B与C,重量比为1:2,第三种只含成分A与C,重量比为2:3,以什么比例取这些混合物,才能使所得的新混合物中A、B与C这三种成分的

24、重量比为3:5:2?解:(比与比例)设第一种混合物x克,那么第二种混合物y克,那么第三种混合物z克,那么:=3:5:2八、工程问题1、一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?解:(工程问题) 设乙还需要X天完成任务, 2、某项工程,如果由甲乙两队承包,天完成,需付180000元;由乙、丙两队承包,天完成,需付150000元;由甲、丙两队承包,天完成,需付160000元,现在工程由一个队单独承包,在保证一周完成的前提下,哪个队承包费用最少?解:(工程问题)工效 钱 每天3、甲乙两台打麦机,甲机工作

25、效率是乙机的2倍,先用甲机打完麦子的,然后用乙机全部打完,所需时间比同时用两台机器全部打完麦子所需时间多11天,问分别用一台机器打完全部麦子各需多少时间?解:工程问题设乙工效x,甲工效2x, 4、整理一批图书,由一个人做需要40小时完成,现在方案由一局部人先做4小时,在增加2人与他们一起做8小时,完成这项任务。假设这些人的工作效率都一样,具体应该先安排多少人工作?解:工程问题设一人一小时工效,先安排x人, 5、一水池用甲管注水,可以在3小时将水池注满,用乙管放水,可以在2小时内将满池水放空,用丙管放水,可以在4小时内将满池水放空,现在先在空池时开甲管1小时,然后三管齐开,问什么时候水池放空?解

26、:工程问题甲进水管工效,乙出水管工效,丙出水管工效设x小时后水池放空, 6、某项工程,甲单独需a天完成,在甲做了cc<a天后,剩下工作由乙单独完成还需b天,假设开场就由甲乙两人共同合作,那么完成任务需天 A. B. C. D. 解:(工程问题, 重要利用工效)甲工效= 乙工效=, 两人合作天数=7、有两只蜡烛,长短粗细各不一样,长的能点7小时,短的能点10小时,同时点燃4小时后,两支蜡烛长度正好相等,问长蜡烛长度是短蜡烛长度的多少倍?解:工程问题,主要考虑效率设长蜡烛长为x,短蜡烛长为y长一小时燃8、一农场有甲、乙两台打谷机,甲机的工作效率是乙机的2倍,假设甲机打完全部谷子的2/3,然后

27、乙机继续打完,所需的时间比同时用两台打谷机打完全部谷子所需时间多4天,问假设分别用甲、乙打谷机打完全部谷子各需多少天?解:工程问题+倍数设乙机工效为x,甲机工效为2x,9五个人要完成某项工作,如果甲、乙、丙三人同时工作需6小时;甲、丙、戊三人同时工作需小时;甲、丙、丁三人同时工作需7.5小时;乙、丙、戊三人同时工作需5小时,问五个人同时工作需用多少小时完成?解:(工程问题+不定方程)甲+乙+丙= 甲+丙+戊=甲+丙+丁= 乙+丙+戊=该题可将甲、乙、丙、丁均用戊表示,也可等式加减10、小王原方案13小时生产一批零件,后因每小时多生产10件,用12小时不但完成了任务,而且还比原方案多生产了60件

28、,问原方案生产多少个零件?解:欲求路程,时间,设速度 设原方案每小时生产x个零件1312(10)+6011、刘师傅要加工一批零件,方案5小时完成,假设每小时多加工3个,就可以提前1小时完成,求这批零件一共多少个?解:欲求路程,时间,设速度设原方案每小时生产x个零件,54(3)12、某车间要在一天内完成一项生产任务,假设每人生产12个零件,还差20个零件不能完成;假设每人生产14个零件就比规定的多生产12个零件,问规定的任务是多少个?该车间有多少名工人?解:欲求路程任务量,速度每人,设时间多少人设人数为x人,1220=1412九、行程问题1、某人从甲地到乙地,假设每小时行8千米,就能比方案提前1

29、小时到达;假设每小时行6千米,就会比方案晚到1小时,求甲乙两地的距离。解:欲求路程,速度,设时间设正点到用x小时, 8(1)=6(1)=路程2、甲、乙两人骑自行车同时从东、西两地相向而行,经过8小时可以相遇。如果甲每小时少行1千米,乙每小时多行3千米,这样经过7小时就能相遇。东、西两地的距离是多少千米?解:欲求路程,时间,设速度设甲速度x,乙速度y8()=7(13)=路程28 路程8×28=2243、甲、乙二人从相距60米的两地反向而行,甲的速度为80米/分,乙的速度为120米/分,假设乙先行2分钟,当甲乙二人相距600米时,求甲共行了多长时间?解:行程问题设甲共行了x分,80120

30、(2)+60=6004、甲、乙两人上午8时从A地出发,步行去B地,甲每分钟行80米,甲的速度是乙的的2倍。途中乙因借自行车耽误了7分钟,他骑自行车的速度是原来的3倍,这样两人在上午9时同时到达B地,乙借车前步行了多少分钟?解:行程问题V甲80米分,V乙步40米分,V乙骑120米分,设乙借车前步行x米,那么骑车时间60-760×80=4012060-75、甲、乙两列客车从两地同时相对开出,5小时后在距离中点30千米处相遇,快车每小时行60千米,慢车每小时行多少千米?解:行程问题中的追及问题慢车每小时行x千米, 530×2=60×56、之间的距离为4000米,某人从A

31、到B地,当他刚离开A地时,正好碰见一辆公共汽车到达A地,在路上他遇到了11辆公共汽车,当他到B地时,恰好有一辆公共汽车正从A发出,汽车的速度为400米/分钟,每隔5分钟发一车,求此人从A到B共需要多长时间?解:相遇问题 设人的速度为X,从A到B时间40007、甲、乙两辆汽车同时从A、B两地相对开出,甲每小时行75千米,乙每小时行65千米。甲、乙两车第一次相遇后继续前进,分别到达B、A两地后,立即按原路返回,两车从出发到第二次相遇共行了6小时,A、B两地相距多少千米?解:相遇问题 设两地相距x千米, 36(75+65)9、甲、乙二人同时从A地去往相距51千米的B地,甲骑车,乙步行,甲的速度比乙的

32、速度快3倍还多1千米/时,甲到达B地后停留1 小时,然后从B地返回A地,在途中遇见乙,这时距他们出发的时间恰好6个小时,求二人速度各是多少?解:变相的相遇问题+倍数10、甲乙从相距210千米的两地相对出发,甲骑摩托车先走,半小时后乙开车出发,相遇后两人继续沿各自方向原速前进,当二人又相距10千米时,乙共行了2小时,甲比乙每小时慢20千米,求甲乙两人的速度。解:行程问题中的变相的相遇问题甲的速度x,乙速度2, 2.52(2)=210+1011、甲、乙两人从相距36千米的两地相向而行,如果甲比乙先出发2小时,那么它们在乙出发2.5小时后相遇,如果乙比甲先出发2小时,他们在甲出发3小时后相遇,问甲、

33、乙两人每小时各自多少千米?解:变相的相遇问题设甲的速度为x,乙的速度为y8、甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。1慢车先开出1小时,快车再开。两车相向而行。问快车开出多少小时后两车相遇?2两车同时开出,相背而行多少小时后两车相距600公里?3两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?4两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?5慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?解:追及与相遇问题 设快车开出后X小时与慢车相遇 设X小时后 480+90

34、+140600 X小时后 480+140-90600 X小时后 140-90480 X小时后 14090(1+48012、某船从A码头顺流而下到达B码头,然后逆流返回,到达A、B两码头之间的C码头,一共航行了7小时,此船在静水中的速度为7.5千米时,水流速度为2.5千米/时。A、C两码头之间的航程为10千米,求A、B两码头之间的航程。解:(流水行船问题) 设间的距离为x , 13、某船从码头A顺流行至码头B又原路返回,共用了5小时,船在静水中的速度为30千米/时,水流速度为6千米/时,求间的距离。解:流水行船设去时用x小时,返回用5(30+6)(30-6)(5)=路程14、一条船顺水行驶36千

35、米与逆水行驶24千米的时间都是3小时,求船在静水中的速度与水流的速度。解:流水行船问题15、一只小船顺流航行在甲、乙两个码头之间需a小时,逆流航行这段路程需b小时,那么一木块顺水漂流这段路需b小时 A. B. C. D. 解:行程问题中流水行船+一样的量设甲乙码头的路程为1木块顺水漂流时间16、从电车总站每隔一定时间开出一辆电车,甲,乙两人在同一街上沿同一方向步行,甲每分钟走82米,每10分钟遇上一辆迎面而来的电车,乙每分钟走60米,每10分15秒碰上一辆迎面而来的电车,问电车总站发车时间间隔。解:追及+相遇+相等的量 车与车之间的距离车×发车时间间隔设发车时间间隔为x18、两条船分

36、别从河的两岸同时相对开出,它们的速度各自一定,第一次相遇在距河的一岸800米(m)处,然后继续前进,各自到达对岸后立即折回,第二次相遇在距河的另一岸600米处,如果认定船到对岸反向航行时不耽误时间,并且不考虑水流速度,问河宽有多少米?解:行程问题中的比与比例问题设河宽X米第一次相遇 甲 乙 与 800 800 X第二次相遇 600 2600 3X 从头算17、甲乙丙三人同时从A到B地,当甲到B地时,乙离B地有200米,丙离B地还有400米,当乙到B地时,丙离B地还有240米,求之间的距离。解:行程问题中的比与比例问题设之间路程为X甲 乙 丙 乙-丙X = =19、甲乙两个人分别从A、两地同时同

37、向而行,甲地距地千米处追上乙,假设甲的速度提高一倍,那么在距地地方追上乙,求的距离。解:行程问题+比与比例设间距离速度未提高前 速度提高前20、甲乙两辆汽车进展千米比赛,当甲车到达终点时,乙车距终点还有a千米0a50现将甲车起跑处从原点后移a千米,重新开场比赛,那么比赛的结果是 A. 甲先到达终点B. 乙先到达终点C. 甲乙同时到达终点D. 确定谁先到与a值无关解:行程问题+比与比例 甲 乙甲快21、甲乙两人同时从同一地点出发,相背而行1小时后他们分别到达各自的终点A与B,假设仍从原地出发,互换彼此的目的地,那么甲在乙到达A之后35分钟到达B,甲乙的速度之比为 A. 35B. 43C. 45D

38、. 34解:行程问题+比与比例 先解x,即可求速度比22、甲乙两人分别位于一个圆形跑道直径的两端,沿跑道相向而行,相遇时候,甲跑了100米,相遇后,两人保持原有的速度大小与方向不变,乙从开场到再次相遇时,还差80米就跑了一圈,求圆形跑道的周长。解:行程问题+比与比例设跑道为x米,甲 乙 甲+乙100 80 23、某队伍长1998米(m),在行进中排尾的一个战士因事赶到排头,然后立即返回,当这个战士回到排尾时,全队已前进1998米,如果队伍与这个战士行进的速度都不改变,求这个战士走过的路程解:行程问题中的比与比例+追及+相遇 通信费 队伍去 1998 x回 x 199824、某人从向下运动着的自

39、动扶梯步行而下,每步一级,共走了50级到达底层,在到达底层后,他又返身奔上这一自动扶梯,也是每步一级,一共走了125级到达顶部,设这人向上奔波的速度是其向下步行速度的5倍,并设他上下来回都是匀速速度,问如自动扶梯停顿后,一共能看到几级楼梯?解:行程问题中的比与比例问题+相遇问题+追及问题 人 电梯 路程与 路程差 下行 50 50 x 上行 125 125 x25、李明与王华步行同时从A、B两地出发,相向而行,在离A地52米处相遇,到达对方出发点后,两人立即以原来的速度原路返回,又在离A地44米处相遇,求A、B两地距离多少米?解:行程问题,全是路程比与比例设相距x千米李明 王华 路程与52 5

40、2 x244 3x26、有甲乙两列火车,甲车长190米,乙车长170米,分别在平行的两条转道上相向而行,两车自车头相遇到车尾相离,经过6秒,甲乙两车的速度比为2:3,求两车的速度。解:错车相遇+比与比例设190+170=623k27、快车车长为100米,速度为15米/秒;慢车车长150米,速度为10米/秒。假设两车相向而行,那么错车的时间间隔为多少秒?假设假设两车同向而行,那么错车的时间间隔为多少秒?假设求两车从齐头并进到完全离开的时间那么应该为多少呢?解:错车问题,方法可在车尾或车头各放一人,将错车问题变为两人的追及与相遇问题设时间为X秒,两车相向:100+150=10+15X两车同向:10

41、0+150=1510X两车齐头:100=1510x28、一铁路桥长1000米,现有一列火车从桥上通过,测得火车从开场上桥到车身过完桥共用1分钟,整列火车完全在桥上的时间为40秒,求火车的速度及火车的长度。解:火车过桥设火车速度为x,车长为y29、如图,在一环行轨道上有三枚弹子同时沿逆时针方向运动。甲于第10秒钟时追上乙,在第30秒时追上丙,第60秒时甲再次追上乙,并且在第70秒时再次追上丙,问乙追上丙用了多少时间?解:追及问题+相等的量(可设为单位1或X)分析:甲第1次追 上乙与甲第2次追 上乙相隔时间为50秒,即甲每50秒追上乙一圈,同理,甲每40秒追上丙一圈,设一圈长度为单位为1,因为甲乙

42、丙三人出发点不在一起,初始乙在甲前10×v甲乙=丙在甲前30×v甲丙=,乙丙相距乙追丙时间,30、公共汽车每隔x分钟()发车一次,小红在大街上行走,发先从背后每隔6分钟开过来一辆公共汽车,而每隔分钟迎面驶来一辆公共汽车,如果公共汽车与小红行进的速度都是匀速的,那么x为多少?解:相遇+追及+相等量设等距为单位1,31、有一人在公路上散步,他看到每隔12分钟有一辆公共汽车从他背后开过来,而每隔4分钟有一辆同一路的公共汽车迎面而来,假设车与这个人的速度都是匀速的,问总站上每隔多少分钟开一辆汽车出来?解:追及+相遇+相等量相邻的公共汽车之间距离不变,设为1发车时间间隔=32、甲、乙

43、两地相距24千米,某人从甲地到乙地,步行一半路程后改骑自行车,共用4小时到达,返回时,一半路程步行,一半路程骑助力车,假设返回时步行,速度是去时速度的,助车车速度是自行车速度的2倍,结果返回时比去时多用了30分钟,求去时步行的速度与自行车的速度。解:行程问题设去时步行速度为x,骑车速度为y,33、甲、乙、丙三人只有一辆自行车,他们同时出发作100千米的旅行,甲先带着丙以时速25千米前进,乙以时速5千米步行,经过一段时间后,丙下车改步行,速度同乙,而甲又折回去接乙,并将乙带上与丙同时到达目的地,求这次旅行所用的时间。解:行程问题最正确方案:让甲先带乙走一段路,然后乙再步行,让丙先步行,然后甲接丙

44、一起走,那么乙步行路程与丙步行路程一样长,三人才能同时到达。设走路的长度x千米,从甲与乙分开后开场计时。34、厂长每天早晨八点钟到达火车站,这时恰有一辆轿车到达火车站接厂长到厂里上班,有一次厂长早晨7点钟到达火车站,然后步行遇到前来接厂长的轿车,随即厂长就乘轿车到厂,结果比平时早到20分钟,问厂长几点种遇到轿车,轿车的速度是厂长步行的速度的几倍?解:行程问题此题应将厂长与车早到20分钟分开考虑厂长早到20分=提前走的时间60分-步行一段路比车走同一段路多用时间车早到20分钟=车少了一段往返路车走单程路10分,厂长步行走该段路用50分, 厂长在7:50遇到轿车35、一辆小汽车与一辆大卡车在一段狭

45、路上相遇,必须倒车,才能继续通过,如果小汽车的速度是大卡车的3 倍,两车倒车的速度是各自正常速度的1/5,小汽车需倒车的路程是大卡车需倒车路程的4倍,为了使后通过狭路的那辆车尽早地通过这段狭路,问哪车倒车较为合理?解:倍数+行程问题设大车倒车速度为v, 小车倒车速度为3v,大车行进速度为5v,小车行进速度为15v假设大车倒车路程为S,假设小车倒车路程为4S.假设大车倒车,那么两车通过这段狭路时间为:假设小车倒车,那么两车通过这段狭路时间为:所以大车倒车合理。36、某乡镇小学到县城参观,规定汽车从县城出发于上午7时到达学校,接参观的师生立即出发到县城,由于汽车在赴校途中发生了故障,不得不停车修理

46、,学校师生等到7时10分仍未见汽车来接,就步行走向县城,在行进途中遇到了已修理好的汽车,立即上车赶赴县城,结果比原来到达县城的时间晚了半小时,如果汽车的速度是步行速度的6倍,问汽车在途中排除故障花了多少时间?解:行程问题,此题应将车与人晚点分别考虑 车晚点的时间30分=修车时间-少走一段路时间往返 人晚点的时间30分=晚出发10分+步行走一段路比车走同一段路多用时间车速=人速的6倍,设车从学校走到碰见人的地方所用时间为X,人从学校走到碰见车的地方所用时间为6X人:30=10+6 4车 30=修车时间-4×2修车时间=3837、A、B两地相距20千米,甲从A到B,乙以B到A,2小时后二

47、人在途中相遇。相遇后,甲返回A,乙仍向A地前进,甲回到A地时,乙离A地还有2千米,求甲乙两人的速度。解:行程问题,注意去时与返回时间一样设甲的速度为x,乙的速度为y38、8个人乘速度一样的两辆小汽车同时赶往火车站,每辆车乘4人不包括司机,其中一辆小汽车在距离火车站15的地方出现故障,此时距停顿检票的时间还有42分钟。这时惟一可利用的交通工具是另一辆小汽车,包括司机在内这辆车限乘5人,且这辆车的平均速度是60,人步行的平均速度是5。试设计两种方案,通过计算说明这8个人能够在停顿检票前赶到火车站。解:行程问题最正确方案:将人分为两拨,第一拨先坐车,后走路,第二拨先走路,后坐车,假设两拨人同时到,那

48、么两拨人走的路程一样,坐车路程也一样设走路的路程长为,从第一拨人与车分开后开场计时,第一拨人走路时间=车用的时间39、某团队从甲地到相隔100千米的乙地去,其中一半人先坐专车,另一半人先步行,先坐车的一半人到途中某处下车步行,而让汽车立即开回去接先步行的那一半人,步行时速4千米,汽车时速20千米,问要使大家下午6点同时到达乙地,必须在什么时候出发?解:行程问题见题38,方法类似十、平均数1、甲、乙两人去江边钓鱼,甲钓了7条鱼,乙钓了11条鱼。中午来了一位游客,甲、乙两人把钓得的鱼烧熟后平均分成3份。餐后,游客付了6元钱给甲、乙两人,问:甲、乙两人应各得多少钱?解:平均数 11+7=18,18&

49、#247;3=6 甲 乙 丙游客 应吃 7米11米0米 实际吃 6条 6条 6条每条鱼6÷6=1元,甲收1元,乙收5元2、小明与小红到商店买作文本,所付的钱一样多,他俩共买了20本,小红比小明多拿4本,因此小红还给小明1.2元。小红与小明共花了多少元?3、甲、乙、丙三人共出27元合伙买了一批练习本,每人出资一样。由于甲比乙少15本,乙与丙要的一样多,因此,乙与丙每人都要给甲1.5元。三人合伙买了多少本练习本?解:平均数 设甲拿x本,乙15,丙15平均每人乙多拿了5本 ,÷27÷0.3=90个本十一、不定方程1、甲、乙两汽车零售商以下分别简称甲、乙向某品牌汽车生产厂

50、订购一批汽车,甲开场定购的汽车数量是乙所订购数量的3倍,后来由于某种原因,甲从其所订的汽车中转让给乙6辆,在提车时,生产厂所提供的汽车比甲、乙所订购的总数少了6辆,最后甲所购汽车的数量是乙所购的2倍,试问甲、乙最后所购得的汽车总数最多是多少量?最少是多少辆?解:不定方程 甲 乙原订购 3x x后订购 36 6 x2最后购 36-(6) 6 =312 6 y6312=2(6) 324解之3、甲、乙、丙三人去买A、B两种类型的笔记本电脑各买1台用去30000元,乙共买A、B两种笔记本电脑8台用去110000元,丙买的A种笔记本电脑台数恰好是乙买的B种笔记本电脑台数,而丙买的B种笔记本电脑台数又恰好

51、是乙买的A种笔记本电脑的台数,问丙用去了多少钱解:不定方程中的等式加减+与设乙买A型x台,那么乙买B型8台,丙买A型8台,丙买B型x台设A、B两种类型单价为A,B30000 (8)=110000 求(8)? +得110000+?=88×30000-110000=1300004、某人1992年的岁数正好等于他出生年份的数字之与,问这人2000年多少岁?解:不定方程 设人出生年份19,岁数=1992-1992-1092-101+9,11282 68该人1968年出生,2000年他32岁十二、时钟问题1、时钟在四点与五点之间,在时刻时针与分针在同一条直线上?解:时钟问题V时针=1格/小时,

52、分针12格/小时起始时间4:00,该题为追及问题,4=(12-1)X2、钟表上8点到9点之间,时针与分针在什么时刻两针重合?又在什么时刻两针成15°的角?解:时钟问题 3、在三点钟与四点钟之间,时针与分针两针何时成一直线不重合?解:时钟问题中追及问题V时针=1格/小时,V分针=12格/小时起始时间为3:00,路程差为3格。4、星期日小明去找同学玩了两、三个小时,离开家时他看了看表,回家时又看了看表,发现回家时时针与分针的位置与离家时恰好互换了一个位置,问小明共离开家多少时间?解:时钟问题中的相遇问题时针与分针共走了12+12+12格, 5、现在是10点与11点之间的某一时刻,在这之后的6分钟的位置与这之前3分钟时间的位置成一直线,求现在的时刻解:时钟问题+变相的追及问题现在的时刻为10点x分,起始时间为10:00,原来路程差为10格。分针走了6分,时针走了3分后,其路程差为6格此题目也可根据分针与时针成一直线,通过简单的比例计算得到现在时针与分针的位置,从而转变为追及问题,因需要图说明,故过程略。十三、相等量为11、甲乙两厂生产同一种产品,都方案把全年的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论