2017最新函数解析式求法和值域求法总结及练习题(共9页)_第1页
2017最新函数解析式求法和值域求法总结及练习题(共9页)_第2页
2017最新函数解析式求法和值域求法总结及练习题(共9页)_第3页
2017最新函数解析式求法和值域求法总结及练习题(共9页)_第4页
2017最新函数解析式求法和值域求法总结及练习题(共9页)_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上函 数 解 析 式 的 七 种 求 法一、 待定系数法:在已知函数解析式的构造时,可用待定系数法例1 设是一次函数,且,求解:设,则, 二、 配凑法:已知复合函数的表达式,求的解析式,的表达式容易配成的运算形式时,常用配凑法但要注意所求函数的定义域不是原复合函数的定义域,而是的值域例2 已知 ,求 的解析式解:, , 三、换元法:已知复合函数的表达式时,还可以用换元法求的解析式与配凑法一样,要注意所换元的定义域的变化例3 已知,求解:令,则, , , 四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法例4已知:函数的图象关于点对称,求的解析式解:设为

2、上任一点,且为关于点的对称点 则 ,解得: ,点在上 , 把代入得:整理得, 五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式例5 设求解 显然将换成,得: 解 联立的方程组,得:六、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式 例7 已知:,对于任意实数x、y,等式恒成立,求解对于任意实数x、y,等式恒成立,不妨令,则有再令 得函数解析式为:七、递推法:若题中所给条件含有某种递进关系,则可以递推得出系列关系式,然后通过迭加、迭乘或者迭代等运算求得

3、函数解析式例8 设是定义在上的函数,满足,对任意的自然数 都有,求 解 ,不妨令,得:,又 令式中的x1,2,n1得:将上述各式相加得:, , 函 数 值 域 求 法 小 结1重难点归纳(1)求函数的值域此类问题主要利用求函数值域的常用方法 配方法、分离变量法、单调性法、图像法、换元法、不等式法等 无论用什么方法求函数的值域,都必须考虑函数的定义域(2)函数的综合性题目此类问题主要考查函数值域、单调性、奇偶性、反函数等一些基本知识相结合的题目 此类问题要求考生具备较高的数学思维能力和综合分析能力以及较强的运算能力 在今后的命题趋势中综合性题型仍会成为热点和重点,并可以逐渐加强(3)运用函数的值

4、域解决实际问题此类问题关键是把实际问题转化为函数问题,从而利用所学知识去解决此类题要求考生具有较强的分析能力和数学建模能力2值域的概念和常见函数的值域函数的值域取决于定义域和对应法则,不论采用什么方法球函数的值域均应考虑其定义域常见函数的值域:一次函数的值域为R二次函数,当时的值域为,当时的值域为反比例函数的值域为指数函数的值域为对数函数的值域为R正,余弦函数的值域为,正,余切函数的值域为R3求函数值域(最值)的常用方法一、观察法(根据函数图象、性质能较容易得出值域(最值)的简单函数)1、求的值域解:由绝对值函数知识及二次函数值域的求法易得:2、求函数的值域分析:首先由0,得+11,然后在求其

5、倒数即得答案解:0+11,0,函数的值域为(0,1二、配方法(当所给函数是二次函数或可化为二次函数的复合函数时,可利用配方法求值域)1、求函数的值域解:设,配方得:利用二次函数的相关知识得,从而得出:说明:在求解值域(最值)时,遇到分式、根式、对数式等类型时要注意函数本身定义域的限制,本题为:2、若,试求的最大值。解:本题可看成一象限动点在直线上滑动时函数的最大值易得:,y=1时,取最大值2三、反表示法(分子、分母只含有一次项的函数,也可用于其它易反解出自变量的函数类型)对于存在反函数且易于求得其反函数的函数,可以利用“原函数的定义域和值域分别为其反函数的值域和定义域”这一性质,先求出其反函数

6、,进而通过求其反函数的定义域的方法求原函数的值域。1、求函数的值域解:因本题中分子、分母均只含有自变量的一次型,易反解出x,从而便于求出反函数。反解得即故函数的值域为:。(反函数的定义域即是原函数的值域)2、求函数的值域解答:,因为,所以,算出值域为四、判别式法(分子、分母中含有二次项的函数类型,此函数经过变形后可以化为的形式,再利用判别式加以判断)1、求函数的值域解:由于本题的分子、分母均为关于x的二次形式,因此可以考虑使用判别式法,将原函数变形为:整理得:当时,上式可以看成关于的二次方程,该方程的范围应该满足,即此时方程有实根即,注意:判别式法解出值域后一定要将端点值(本题是)代回方程检验

7、将分别代入检验得不符合方程,所以2、求函数的值域解答:先将此函数化成隐函数的形式得:,(1)这是一个关于的一元二次方程,原函数有定义,等价于此方程有解,即方程(1)的判别式,解得:五、换元法(通过简单的换元把一个函数变为简单函数,其题型特征是无理函数、三角函数(用三角代换)等)1、求函数的值域解:由于题中含有不便于计算,但如果令:注意从而得:变形得即:注意:在使用换元法换元时一定要注意新变量的范围,否则将会发生错误六、数形结合法(对于一些能够准确画出函数图像的函数来说,可以先画出其函数图像,然后利用函数图像求其值域)1、求函数的值域。分析:此题首先是如何去掉绝对值,将其做成一个分段函数在对应的

8、区间内,画出此函数的图像,如图1所示,易得出函数的值域为七、不等式法(能利用几个重要不等式及推论来求得最值(如:),利用此法求函数的值域,要合理地添项和拆项,添项和拆项的原则是要使最终的乘积结果中不含自变量,同时,利用此法时应注意取成立的条件)1、求函数的值域解答:,当且仅当时取等号注意:在使用此法时一定要注意的前提条件是a0,b0,且能取到ab八、部分分式法(分离常数法)(分式且分子、分母中有相似的项,通过该方法可将原函数转化为为(常数)的形式)1、求函数的值域解答:观察分子、分母中均含有项,可利用部分分式法;则有不妨令:从而注意:在本题中应排除,因为作为分母。所以故2、如对于函数,利用恒等

9、变形,得到:,容易观察得出此函数的值域为注意到分时的分子、分母的结构特点,分离出一个常数后,再通过观察或配方等其他方法易得函数值域九、单调性法(利用函数在给定的区间上的单调递增或单调递减求值域)十、利用导数求函数的值域(若函数f在(a、b)内可导,可以利用导数求得在(a、b)内的极值,然后再计算在a,b点的极限值。从而求得f的值域)十一、最值法(对于闭区间a,b上的连续函数y=f(x),可求出y=f(x)在区间a,b内的极值,并与边界值f(a)、f(b)作比较,求出函数的最值,可得到函数y的值域)十二、构造法(根据函数的结构特征,赋予几何图形,数形结合)十三、比例法(对于一类含条件的函数的值域

10、的求法,可将条件转化为比例式,代入目标函数,进而求出原函数的值域)专心-专注-专业配 套 练 习求函数的解析式例1已知f (x)= ,求f ()的解析式 ( 代入法 / 拼凑法 )变式1已知f (x)= , 求f ()的解析式 变式2已知f (x+1),求f (x)的解析式 例2若f f (x)4x3,求一次函数f (x)的解析式 ( 待定系数法 )变式1已知f (x)是二次函数,且,求f (x)例3已知f (x)2 f (x)x ,求函数f (x)的解析式 ( 消去法/ 方程组法 )变式1已知2 f (x) f (x)x1 ,求函数f (x)的解析式变式2已知2 f (x)f 3x ,求函数f (x)的解析式例4设对任意数x,y均有

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论