版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、96-10 今有6个铅弹头,用“中子活化”方法测得7种微量元素的含量数据(见表1)。(1) 试用多种系统聚类法对6个弹头进行分类;并比较分类结果;(2) 试用多种方法对7种微量元素进行分类。表1 微量元素含量数据 元素样品号Ag(银)(X1)Al(铝)Cu(铜)Ca(钙)Sb(锑)Bi(铋)Sn(锡)(X2)(X3)(X4)(X5)(X6)(X7)10.057985.5150347.1021.9108586174261.6920.084413.9700347.2019.71079472000244030.072171.153054.853.05238601445949740.150101.70
2、20307.5015.030122901461638055.744002.8540229.609.657809912661252060.213000.7058240.3013.910898028204135问题求解1对6个弹头进行分类对数据进行标准化变换,样品间距离定义为欧式距离,系统聚类的方法分别使用类平均法(AVE)、中间距离法(MID)、可变类平均法(FLE)和离差平方合法(WARD)。使用SAS软件CLUSTER过程对数据进行聚类分析(程序见附录1)。1.1类平均法图1 类平均聚类法相关矩阵特征值图图2 类平均聚类分析法聚类历史图由图2可知,NCL=1时半偏R2最大且伪F统计量在NCL
3、=2,5时和伪t方统计量在NCL=1,4时较大。因此,将6个弹头分为两类。SAS绘制的谱系聚类图如图3所示。图3 类平均聚类分析法谱系聚类图1.2中间距离法图4 中间距离聚类法相关矩阵特征值图图5 中间距离聚类法聚类历史图由图5可知,中间距离法与类平均法结果一致。因此,也将6个弹头分为两类。SAS绘制的谱系聚类图如图6所示。图6 中间距离聚类法谱系聚类图1.3可变类平均法图7可变类平均聚类法分析结果图图8 可变类平均聚类法聚类历史图由图8可知,可变类平均法()输出结果与前两种方法稍有不同,NCL=1时半偏R2最大且伪F统计量在NCL=2时次大,NCL=5时最大;而伪t方统计量在NCL=1时最大
4、。因此,分类结果与之前相同,将6个弹头分为两类。SAS绘制的谱系聚类图如图9所示。图9 可变类平均聚类法谱系聚类图1.4离差平方和法图10 离差平方和聚类法相关矩阵特征值图图11 离差平方和聚类法聚类历史由图11可知,离差平方和法输出结果与可变类平均法结果一致。SAS绘制的NCL=2时离差平方和法谱系聚类图和分类结果如下所示。图12 离差平方和聚类法谱系聚类图图13 离差平方和聚类法聚类结果图1.5 综合分析综上所述,四种分类方法得到的结果一致,都是将6个弹头分为两类。四种方法中,类平均法和中间距离法结果相近;可变类平均法和离差平方和法得到结果相近且更加准确(伪t方统计量在NCL=1时最大)。
5、2对7种元素进行分类同问题1,系统聚类的方法分别使用类平均法(AVE)、中间距离法(MID)、可变类平均法(FLE)和离差平方合法(WARD)。使用SAS软件CLUSTER过程对数据进行聚类分析(程序见附录2)。2.1 类平均法图14 7种元素类平均法聚类历史图由图14可知,NCL=1,2时半偏R2较大;伪F统计量在NCL=4,5,6时较大;而伪t方统计量在NCL=3,4时较大。因此,较合适的分法是将7种元素分为四类和五类。SAS绘制的谱系聚类图如下所示。图15 7种元素类平均法谱系聚类图2.2 中间距离法图16 7种元素中间距离法聚类历史图由图16可知,中间距离法聚类结果中NCL=1,2时半
6、偏R2较大;伪F统计量在NCL=4,5,6时较大;而伪t方统计量在NCL=3,4时较大。因此,与类平均法相同,较合适的分法是将7种元素分为四类和五类。SAS绘制的谱系聚类图如下所示。图17 7种元素中间距离法谱系聚类图2.3 可变类平均法图18 7种元素可变类平均法聚类历史图由图18可知,可变类平均法聚类结果与前两种方法结果相同,较合适的分法是将7种元素分为四类和五类。SAS绘制的谱系聚类图如下所示。图19 7种元素可变类平均法谱系聚类图2.4 离差平方和法图20 7种元素离差平方和法聚类历史图由图20可知,离差平方和法聚类结果与前三种方法结果也相同,较合适的分法是将7种元素分为四类和五类。S
7、AS绘制的NCL=4,5时的谱系聚类图和分类结果图如下所示。图21 7种元素离差平方和法谱系聚类图图22 分为四类时7种元素聚类结果图图23 分为五类时7种元素聚类结果图2.4综合分析综上所述,四种分类方法结果相同,合适的分法是将7种元素分为四类和五类。分为四类时,分类结果如下;分为五类时,分类结果如下。176-11 设在某地区抽取了14块岩石标本,其中7块含矿,7块不含矿。对每块岩石测定了Cu,Ag,Bi三种化学成分的含量,得到的数据见表2,试用几种系统聚类方法进行聚类分析,给出综合的分析结果,并与实际情况进行比较。表2 岩石化学成分的含量数据类型序号CuAgBi类型序号CuAgBi含矿12
8、.580.900.95不含矿82.251.981.0622.901.231.0092.161.801.0633.551.151.00102.331.741.1042.351.150.79111.961.481.0453.541.850.79121.941.401.0062.702.231.30133.001.301.0072.701.700.48142.781.701.48问题求解1 多种系统聚类方法分析数据系统聚类的方法分别使用类平均法(AVE)、可变类平均法(FLE)和离差平方合法(WARD)。使用SAS软件CLUSTER过程对数据进行聚类分析(程序见附录3)。1.1 类平均法图1 类平均
9、法聚类历史由图1可知,类平均法聚类结果中NCL=1时半偏R2最大,NCL>1时半偏R2明显减小且缓慢递减;伪F统计量在NCL=2时的值大于NCL=3时的值;而伪t方统计量在NCL=1时的值明显大于NCL=2时的值。因此,将14块岩石标本分为两组较为合适。SAS绘制的谱系聚类图及聚类结果图如下所示。图2 类平均法谱系聚类图图3 类平均法聚类结果图1.2 可变类平均法图4 可变类平均法聚类历史由图4可知,可变类平均法聚类结果同类平均法结果基本一致。因此,将14块岩石标本分为两组较为合适。SAS绘制的谱系聚类图如下所示,聚类结果与类平均法相同(见图3)。图5 可变类平均法谱系聚类图1.3 离差
10、平方和法图6 离差平方和法聚类历史由图6可知,离差平方和法聚类结果同前两种方法基本一致。因此,同样将14块岩石标本分为两组较为合适。SAS绘制的谱系聚类图如下所示,聚类结果见图8。图7 离差平方和法谱系聚类图图8 离差平方和法聚类结果2 综合分析综上所述,三种系统聚类法得到的聚类结果完全一致。分类结果如下。因此,可以发现样品6、13分类有误。样品13应当归为G1含矿类;而样品6应当归为G2不含矿。6-12 某城市的环保监测站于1982年在全市均匀地布置了16个监测点,每日三次定时抽取大气样品,测量大气中二氧化硫,氮氧化物和飘尘的含量。前后5天,每个取样点(监测点)对每重污染元素实测15次,取1
11、5次实测值的平均作为该养点大气污染元素的含量数据见表3。试用几种系统聚类方法进行聚类分析,并给出综合的分析结果。表3 大气污染数据 污染元素样品号二氧化硫(X1)氮氧化物(X2)飘尘(X3)类别10.0450.0430.265220.0660.0390.264230.0940.0610.194240.0030.0030.102350.0480.0150.106360.2100.0660.263170.0860.0720.274280.1960.0720.211190.1870.0820.3011100.0530.0600.2092110.0200.0080.1123120.0350.0150.
12、1703130.2050.0680.2841140.0880.0580.2152150.1010.0520.181160.0450.0050.122问题求解1 系统聚类分析系统聚类的方法分别使用类平均法(AVE)和离差平方合法(WARD)。使用SAS软件CLUSTER过程对数据进行聚类分析(程序见附录4)。1.1 类平均法图1 类平均法聚类历史图由图1可知,类平均法聚类结果中NCL=1,2时半偏R 2分别为最大、次大;伪F统计量在NCL=3,4时分别为最大、次大(NCL<6);而伪t方统计量在NCL=1,2时的值分别为最大、次大。因此,将16个样品划分为三组较为合适。SAS绘制的谱系聚类
13、图及聚类结果图如下所示。图2 类平均法谱系聚类图图3 类平均法聚类结果图1.2 离差平方和法图4 离差平方和法聚类历史图由图4可知,离差平方和法聚类结果与类平均法一致。NCL=1,2时半偏R 2分别为最大、次大;伪F统计量在NCL=3,4时分别为最大、次大(NCL<6);而伪t方统计量在NCL=1,2时的值分别为最大、次大。因此,将16个样品划分为三组较为合适。SAS绘制的谱系聚类图及聚类结果图如下所示。图5 离差平方和法谱系聚类图图6 离差平方和法聚类结果图2 综合分析离差平方和法与平均法分类结果相同。原始的样品分组情况如表4所示。表4 样品原始分组情况样品号类别样品号类别617281
14、102911421314312532211332123表1中样品的原始分组与离差平方和法和类平均法进行系统聚类分析得到的结果完全一致。因此,可以认为离差平方和法和类平均法得到的分类能有效应用到样品15、16,它们应分别归为2、3类。附录_1(6-10问题1 SAS程序)data d610; input group $ x1-x7 ; cards;1 0.057985.515347.121.918586174261.692 0.084413.97347.219.717947200024403 0.072171.15354.853.0523860144594974 0.15011.702307.5
15、15.0312290146163805 5.7442.854229.69.65780991266125206 0.2130.7058240.313.91898028204135;proc print data=d610;run;proc cluster data=d610 method=ave std pseudo ccc outtree=b610; var x1-x7; id group;proc tree data=b610 horizontal graphics ; title '使用类平均法的谱系聚类图'run;title;proc cluster data=d610
16、method=med std pseudo ccc outtree=b610; var x1-x7; id group;proc tree data=b610 horizontal graphics ; title '使用中间距离法的谱系聚类图'run;title;proc cluster data=d610 method=fle std pseudo ccc outtree=b610; var x1-x7; id group;proc tree data=b610 horizontal graphics ; title '使用可变类平均法的谱系聚类图'run;
17、title;proc cluster data=d610 method=ward std pseudo ccc outtree=b610; var x1-x7; id group;proc tree data=b610 horizontal graphics n=2 out=c610 ; copy group x1-x7; title '使用Ward法的谱系聚类图'run;title '使用Ward法'proc sort data=c610; by cluster;run;proc print data=c610; var cluster group x1-x7
18、;run;proc means data=c610 ; by cluster; var x1-x7;run;quit;_2(6-10问题2 SAS程序)data d6101; input group $ x1-x6 ; cards; Ag0.057980.084410.072170.15015.7440.213Al5.5153.971.1531.7022.8540.7058Cu347.1347.254.85307.5229.6240.3Ca21.9119.713.05215.039.65713.91Sb8586794738601229080998980Bi1742200014451461126
19、62820Sn61.69244094976380125204135;proc print data=d6101;run;proc cluster data=d6101 method=ave std pseudo ccc outtree=b6101; var x1-x6; id group;proc tree data=b6101 horizontal graphics ; title '使用类平均法的谱系聚类图'run;title;proc cluster data=d6101 method=med std pseudo ccc outtree=b6101; var x1-x6
20、; id group;proc tree data=b6101 horizontal graphics ; title '使用中间距离法的谱系聚类图'run;title;proc cluster data=d6101 method=fle std pseudo ccc outtree=b6101; var x1-x6; id group;proc tree data=b6101 horizontal graphics ; title '使用可变类平均法的谱系聚类图'run;title;proc cluster data=d6101 method=ward std
21、 pseudo ccc outtree=b6101; var x1-x6; id group;proc tree data=b6101 horizontal graphics n=? out=c6101 ;/*?=4/5*/ copy group x1-x6; title '使用Ward法的谱系聚类图'run;title '使用Ward法'proc sort data=c6101; by cluster;run;proc print data=c6101; var cluster group x1-x6;run;proc means data=c6101; by
22、 cluster; var x1-x6;run;quit;_3(6-11 SAS程序)data d611; input group $ x1-x3 ; cards;12.58 0.9 0.9522.9 1.23 133.55 1.15 142.35 1.15 0.7953.54 1.85 0.7962.7 2.23 1.372.7 1.7 0.4882.25 1.98 1.0692.16 1.8 1.06102.33 1.74 1.1111.96 1.48 1.04121.94 1.4 1133 1.3 1142.78 1.7 1.48;proc print data=d611;run;pro
23、c cluster data=d611 method=ave std pseudo ccc outtree=b611; var x1-x3; id group;proc tree data=b611 horizontal graphics out=c1 ncl=2;run;proc print data=c1;run;proc cluster data=d611 method=fle std pseudo ccc outtree=b611; var x1-x3; id group;proc tree data=b611 horizontal graphics out=c2 ncl=2;run;
24、proc print data=c2;run;proc cluster data=d611 method=ward std pseudo ccc outtree=b611; var x1-x3; id group;proc tree data=b611 horizontal graphics n=2 out=c611 ; copy group x1-x3;run;proc sort data=c611; by cluster;run;proc print data=c611; var cluster group x1-x3;run;proc means data=c611; by cluster; var x1-x3;run;quit;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度行政单位合同内部管理优化与改进合同3篇
- 2025年度内墙粉刷施工与墙面涂料环保认证合同3篇
- 二零二五年度文化场馆保洁与文物保护合同3篇
- 二零二五年度农业农机信息化建设与维护合同3篇
- 2025年度新能源汽车居间买卖服务合同3篇
- 二零二五年度交通设施租赁合同范本3篇
- 农村农业劳务用工合同(2025年度)劳务派遣服务合同
- 2025年信用社黄金租赁合同模板3篇
- 2025年度汽车维修厂汽车用品销售承包合同3篇
- 2024年中国环保健康湿毛巾市场调查研究报告
- 电子工程师职位合同
- 2025届青海省西宁二十一中学七年级数学第一学期期末考试试题含解析
- 湖北省宜昌市2025届九年级物理第一学期期末达标测试试题含解析
- DL-T5394-2021电力工程地下金属构筑物防腐技术导则
- 儿科护理技术操作规范
- 2024年江苏宿迁经济技术开发区城市管理辅助人员招聘笔试参考题库附带答案详解
- 马拉松赛事运营服务方案
- 阳光少年体验营辅导员工作总结
- 国家能源集团考试试题
- 2024销售业绩深度总结报告
- 小学道德与法治教学工作总结3篇
评论
0/150
提交评论